123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- // Copyright (c) 2009-2010 Satoshi Nakamoto
- // Copyright (c) 2009-2015 The Bitcoin Core developers
- // Distributed under the MIT software license, see the accompanying
- // file COPYING or http://www.opensource.org/licenses/mit-license.php.
-
- #ifndef BITCOIN_KEY_H
- #define BITCOIN_KEY_H
-
- #include "pubkey.h"
- #include "serialize.h"
- #include "support/allocators/secure.h"
- #include "uint256.h"
-
- #include <stdexcept>
- #include <vector>
-
-
- /**
- * secp256k1:
- * const unsigned int PRIVATE_KEY_SIZE = 279;
- * const unsigned int PUBLIC_KEY_SIZE = 65;
- * const unsigned int SIGNATURE_SIZE = 72;
- *
- * see www.keylength.com
- * script supports up to 75 for single byte push
- */
-
- /**
- * secure_allocator is defined in allocators.h
- * CPrivKey is a serialized private key, with all parameters included (279 bytes)
- */
- typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
-
- /** An encapsulated private key. */
- class CKey
- {
- private:
- //! Whether this private key is valid. We check for correctness when modifying the key
- //! data, so fValid should always correspond to the actual state.
- bool fValid;
-
- //! Whether the public key corresponding to this private key is (to be) compressed.
- bool fCompressed;
-
- //! The actual byte data
- unsigned char vch[32];
-
- //! Check whether the 32-byte array pointed to be vch is valid keydata.
- bool static Check(const unsigned char* vch);
-
- public:
- //! Construct an invalid private key.
- CKey() : fValid(false), fCompressed(false)
- {
- LockObject(vch);
- }
-
- //! Copy constructor. This is necessary because of memlocking.
- CKey(const CKey& secret) : fValid(secret.fValid), fCompressed(secret.fCompressed)
- {
- LockObject(vch);
- memcpy(vch, secret.vch, sizeof(vch));
- }
-
- //! Destructor (again necessary because of memlocking).
- ~CKey()
- {
- UnlockObject(vch);
- }
-
- friend bool operator==(const CKey& a, const CKey& b)
- {
- return a.fCompressed == b.fCompressed && a.size() == b.size() &&
- memcmp(&a.vch[0], &b.vch[0], a.size()) == 0;
- }
-
- //! Initialize using begin and end iterators to byte data.
- template <typename T>
- void Set(const T pbegin, const T pend, bool fCompressedIn)
- {
- if (pend - pbegin != 32) {
- fValid = false;
- return;
- }
- if (Check(&pbegin[0])) {
- memcpy(vch, (unsigned char*)&pbegin[0], 32);
- fValid = true;
- fCompressed = fCompressedIn;
- } else {
- fValid = false;
- }
- }
-
- //! Simple read-only vector-like interface.
- unsigned int size() const { return (fValid ? 32 : 0); }
- const unsigned char* begin() const { return vch; }
- const unsigned char* end() const { return vch + size(); }
-
- //! Check whether this private key is valid.
- bool IsValid() const { return fValid; }
-
- //! Check whether the public key corresponding to this private key is (to be) compressed.
- bool IsCompressed() const { return fCompressed; }
-
- //! Initialize from a CPrivKey (serialized OpenSSL private key data).
- bool SetPrivKey(const CPrivKey& vchPrivKey, bool fCompressed);
-
- //! Generate a new private key using a cryptographic PRNG.
- void MakeNewKey(bool fCompressed);
-
- /**
- * Convert the private key to a CPrivKey (serialized OpenSSL private key data).
- * This is expensive.
- */
- CPrivKey GetPrivKey() const;
-
- /**
- * Compute the public key from a private key.
- * This is expensive.
- */
- CPubKey GetPubKey() const;
-
- /**
- * Create a DER-serialized signature.
- * The test_case parameter tweaks the deterministic nonce.
- */
- bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, uint32_t test_case = 0) const;
-
- /**
- * Create a compact signature (65 bytes), which allows reconstructing the used public key.
- * The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
- * The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
- * 0x1D = second key with even y, 0x1E = second key with odd y,
- * add 0x04 for compressed keys.
- */
- bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
-
- //! Derive BIP32 child key.
- bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
-
- /**
- * Verify thoroughly whether a private key and a public key match.
- * This is done using a different mechanism than just regenerating it.
- */
- bool VerifyPubKey(const CPubKey& vchPubKey) const;
-
- //! Load private key and check that public key matches.
- bool Load(CPrivKey& privkey, CPubKey& vchPubKey, bool fSkipCheck);
-
- //! Check whether an element of a signature (r or s) is valid.
- static bool CheckSignatureElement(const unsigned char* vch, int len, bool half);
- };
-
- struct CExtKey {
- unsigned char nDepth;
- unsigned char vchFingerprint[4];
- unsigned int nChild;
- ChainCode chaincode;
- CKey key;
-
- friend bool operator==(const CExtKey& a, const CExtKey& b)
- {
- return a.nDepth == b.nDepth && memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], 4) == 0 && a.nChild == b.nChild &&
- a.chaincode == b.chaincode && a.key == b.key;
- }
-
- void Encode(unsigned char code[74]) const;
- void Decode(const unsigned char code[74]);
- bool Derive(CExtKey& out, unsigned int nChild) const;
- CExtPubKey Neuter() const;
- void SetMaster(const unsigned char* seed, unsigned int nSeedLen);
- };
-
- /** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
- void ECC_Start(void);
-
- /** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
- void ECC_Stop(void);
-
- /** Check that required EC support is available at runtime. */
- bool ECC_InitSanityCheck(void);
-
- #endif // BITCOIN_KEY_H
|