123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- // Copyright (c) 2009-2010 Satoshi Nakamoto
- // Copyright (c) 2009-2016 The Bitcoin Core developers
- // Distributed under the MIT software license, see the accompanying
- // file COPYING or http://www.opensource.org/licenses/mit-license.php.
-
- #include "chain.h"
-
- /**
- * CChain implementation
- */
- void CChain::SetTip(CBlockIndex *pindex) {
- if (pindex == nullptr) {
- vChain.clear();
- return;
- }
- vChain.resize(pindex->nHeight + 1);
- while (pindex && vChain[pindex->nHeight] != pindex) {
- vChain[pindex->nHeight] = pindex;
- pindex = pindex->pprev;
- }
- }
-
- CBlockLocator CChain::GetLocator(const CBlockIndex *pindex) const {
- int nStep = 1;
- std::vector<uint256> vHave;
- vHave.reserve(32);
-
- if (!pindex)
- pindex = Tip();
- while (pindex) {
- vHave.push_back(pindex->GetBlockHash());
- // Stop when we have added the genesis block.
- if (pindex->nHeight == 0)
- break;
- // Exponentially larger steps back, plus the genesis block.
- int nHeight = std::max(pindex->nHeight - nStep, 0);
- if (Contains(pindex)) {
- // Use O(1) CChain index if possible.
- pindex = (*this)[nHeight];
- } else {
- // Otherwise, use O(log n) skiplist.
- pindex = pindex->GetAncestor(nHeight);
- }
- if (vHave.size() > 10)
- nStep *= 2;
- }
-
- return CBlockLocator(vHave);
- }
-
- const CBlockIndex *CChain::FindFork(const CBlockIndex *pindex) const {
- if (pindex == nullptr) {
- return nullptr;
- }
- if (pindex->nHeight > Height())
- pindex = pindex->GetAncestor(Height());
- while (pindex && !Contains(pindex))
- pindex = pindex->pprev;
- return pindex;
- }
-
- CBlockIndex* CChain::FindEarliestAtLeast(int64_t nTime) const
- {
- std::vector<CBlockIndex*>::const_iterator lower = std::lower_bound(vChain.begin(), vChain.end(), nTime,
- [](CBlockIndex* pBlock, const int64_t& time) -> bool { return pBlock->GetBlockTimeMax() < time; });
- return (lower == vChain.end() ? nullptr : *lower);
- }
-
- /** Turn the lowest '1' bit in the binary representation of a number into a '0'. */
- int static inline InvertLowestOne(int n) { return n & (n - 1); }
-
- /** Compute what height to jump back to with the CBlockIndex::pskip pointer. */
- int static inline GetSkipHeight(int height) {
- if (height < 2)
- return 0;
-
- // Determine which height to jump back to. Any number strictly lower than height is acceptable,
- // but the following expression seems to perform well in simulations (max 110 steps to go back
- // up to 2**18 blocks).
- return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height);
- }
-
- CBlockIndex* CBlockIndex::GetAncestor(int height)
- {
- if (height > nHeight || height < 0)
- return nullptr;
-
- CBlockIndex* pindexWalk = this;
- int heightWalk = nHeight;
- while (heightWalk > height) {
- int heightSkip = GetSkipHeight(heightWalk);
- int heightSkipPrev = GetSkipHeight(heightWalk - 1);
- if (pindexWalk->pskip != nullptr &&
- (heightSkip == height ||
- (heightSkip > height && !(heightSkipPrev < heightSkip - 2 &&
- heightSkipPrev >= height)))) {
- // Only follow pskip if pprev->pskip isn't better than pskip->pprev.
- pindexWalk = pindexWalk->pskip;
- heightWalk = heightSkip;
- } else {
- assert(pindexWalk->pprev);
- pindexWalk = pindexWalk->pprev;
- heightWalk--;
- }
- }
- return pindexWalk;
- }
-
- const CBlockIndex* CBlockIndex::GetAncestor(int height) const
- {
- return const_cast<CBlockIndex*>(this)->GetAncestor(height);
- }
-
- void CBlockIndex::BuildSkip()
- {
- if (pprev)
- pskip = pprev->GetAncestor(GetSkipHeight(nHeight));
- }
-
- arith_uint256 GetBlockProof(const CBlockIndex& block)
- {
- arith_uint256 bnTarget;
- bool fNegative;
- bool fOverflow;
- bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow);
- if (fNegative || fOverflow || bnTarget == 0)
- return 0;
- // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256
- // as it's too large for an arith_uint256. However, as 2**256 is at least as large
- // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1,
- // or ~bnTarget / (nTarget+1) + 1.
- return (~bnTarget / (bnTarget + 1)) + 1;
- }
-
- int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params)
- {
- arith_uint256 r;
- int sign = 1;
- if (to.nChainWork > from.nChainWork) {
- r = to.nChainWork - from.nChainWork;
- } else {
- r = from.nChainWork - to.nChainWork;
- sign = -1;
- }
- r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip);
- if (r.bits() > 63) {
- return sign * std::numeric_limits<int64_t>::max();
- }
- return sign * r.GetLow64();
- }
-
- /** Find the last common ancestor two blocks have.
- * Both pa and pb must be non-nullptr. */
- const CBlockIndex* LastCommonAncestor(const CBlockIndex* pa, const CBlockIndex* pb) {
- if (pa->nHeight > pb->nHeight) {
- pa = pa->GetAncestor(pb->nHeight);
- } else if (pb->nHeight > pa->nHeight) {
- pb = pb->GetAncestor(pa->nHeight);
- }
-
- while (pa != pb && pa && pb) {
- pa = pa->pprev;
- pb = pb->pprev;
- }
-
- // Eventually all chain branches meet at the genesis block.
- assert(pa == pb);
- return pa;
- }
|