You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

678 lines
24 KiB

#!/usr/bin/env python3
# Copyright (c) 2014-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or
# Helpful routines for regression testing
import os
import sys
from binascii import hexlify, unhexlify
from base64 import b64encode
from decimal import Decimal, ROUND_DOWN
import json
import http.client
import random
import shutil
import subprocess
import time
import re
import errno
from . import coverage
from .authproxy import AuthServiceProxy, JSONRPCException
# The maximum number of nodes a single test can spawn
# Don't assign rpc or p2p ports lower than this
PORT_MIN = 11000
# The number of ports to "reserve" for p2p and rpc, each
class PortSeed:
# Must be initialized with a unique integer for each process
n = None
#Set Mocktime default to OFF.
#MOCKTIME is only needed for scripts that use the
#cached version of the blockchain. If the cached
#version of the blockchain is used without MOCKTIME
#then the mempools will not sync due to IBD.
def enable_mocktime():
#For backwared compatibility of the python scripts
#with previous versions of the cache, set MOCKTIME
#to Jan 1, 2014 + (201 * 10 * 60)
MOCKTIME = 1388534400 + (201 * 10 * 60)
def disable_mocktime():
def get_mocktime():
def enable_coverage(dirname):
"""Maintain a log of which RPC calls are made during testing."""
COVERAGE_DIR = dirname
def get_rpc_proxy(url, node_number, timeout=None):
url (str): URL of the RPC server to call
node_number (int): the node number (or id) that this calls to
timeout (int): HTTP timeout in seconds
AuthServiceProxy. convenience object for making RPC calls.
proxy_kwargs = {}
if timeout is not None:
proxy_kwargs['timeout'] = timeout
proxy = AuthServiceProxy(url, **proxy_kwargs)
proxy.url = url # store URL on proxy for info
coverage_logfile = coverage.get_filename(
COVERAGE_DIR, node_number) if COVERAGE_DIR else None
return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile)
def p2p_port(n):
assert(n <= MAX_NODES)
return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES)
def rpc_port(n):
return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES)
def check_json_precision():
"""Make sure json library being used does not lose precision converting BTC values"""
n = Decimal("20000000.00000003")
satoshis = int(json.loads(json.dumps(float(n)))*1.0e8)
if satoshis != 2000000000000003:
raise RuntimeError("JSON encode/decode loses precision")
def count_bytes(hex_string):
return len(bytearray.fromhex(hex_string))
def bytes_to_hex_str(byte_str):
return hexlify(byte_str).decode('ascii')
def hex_str_to_bytes(hex_str):
return unhexlify(hex_str.encode('ascii'))
def str_to_b64str(string):
return b64encode(string.encode('utf-8')).decode('ascii')
def sync_blocks(rpc_connections, *, wait=1, timeout=60):
Wait until everybody has the same tip.
sync_blocks needs to be called with an rpc_connections set that has least
one node already synced to the latest, stable tip, otherwise there's a
chance it might return before all nodes are stably synced.
# Use getblockcount() instead of waitforblockheight() to determine the
# initial max height because the two RPCs look at different internal global
# variables (chainActive vs latestBlock) and the former gets updated
# earlier.
maxheight = max(x.getblockcount() for x in rpc_connections)
start_time = cur_time = time.time()
while cur_time <= start_time + timeout:
tips = [r.waitforblockheight(maxheight, int(wait * 1000)) for r in rpc_connections]
if all(t["height"] == maxheight for t in tips):
if all(t["hash"] == tips[0]["hash"] for t in tips):
raise AssertionError("Block sync failed, mismatched block hashes:{}".format(
"".join("\n {!r}".format(tip) for tip in tips)))
cur_time = time.time()
raise AssertionError("Block sync to height {} timed out:{}".format(
maxheight, "".join("\n {!r}".format(tip) for tip in tips)))
def sync_chain(rpc_connections, *, wait=1, timeout=60):
Wait until everybody has the same best block
while timeout > 0:
best_hash = [x.getbestblockhash() for x in rpc_connections]
if best_hash == [best_hash[0]]*len(best_hash):
timeout -= wait
raise AssertionError("Chain sync failed: Best block hashes don't match")
def sync_mempools(rpc_connections, *, wait=1, timeout=60):
Wait until everybody has the same transactions in their memory
while timeout > 0:
pool = set(rpc_connections[0].getrawmempool())
num_match = 1
for i in range(1, len(rpc_connections)):
if set(rpc_connections[i].getrawmempool()) == pool:
num_match = num_match+1
if num_match == len(rpc_connections):
timeout -= wait
raise AssertionError("Mempool sync failed")
bitcoind_processes = {}
def initialize_datadir(dirname, n):
datadir = os.path.join(dirname, "node"+str(n))
if not os.path.isdir(datadir):
rpc_u, rpc_p = rpc_auth_pair(n)
with open(os.path.join(datadir, "bitcoin.conf"), 'w', encoding='utf8') as f:
f.write("rpcuser=" + rpc_u + "\n")
f.write("rpcpassword=" + rpc_p + "\n")
return datadir
def rpc_auth_pair(n):
return 'rpcuser💻' + str(n), 'rpcpass🔑' + str(n)
def rpc_url(i, rpchost=None):
rpc_u, rpc_p = rpc_auth_pair(i)
host = ''
port = rpc_port(i)
if rpchost:
parts = rpchost.split(':')
if len(parts) == 2:
host, port = parts
host = rpchost
return "http://%s:%s@%s:%d" % (rpc_u, rpc_p, host, int(port))
def wait_for_bitcoind_start(process, url, i):
Wait for bitcoind to start. This means that RPC is accessible and fully initialized.
Raise an exception if bitcoind exits during initialization.
while True:
if process.poll() is not None:
raise Exception('bitcoind exited with status %i during initialization' % process.returncode)
rpc = get_rpc_proxy(url, i)
blocks = rpc.getblockcount()
break # break out of loop on success
except IOError as e:
if e.errno != errno.ECONNREFUSED: # Port not yet open?
raise # unknown IO error
except JSONRPCException as e: # Initialization phase
if e.error['code'] != -28: # RPC in warmup?
raise # unknown JSON RPC exception
def initialize_chain(test_dir, num_nodes, cachedir):
Create a cache of a 200-block-long chain (with wallet) for MAX_NODES
Afterward, create num_nodes copies from the cache
assert num_nodes <= MAX_NODES
create_cache = False
for i in range(MAX_NODES):
if not os.path.isdir(os.path.join(cachedir, 'node'+str(i))):
create_cache = True
if create_cache:
#find and delete old cache directories if any exist
for i in range(MAX_NODES):
if os.path.isdir(os.path.join(cachedir,"node"+str(i))):
# Create cache directories, run bitcoinds:
for i in range(MAX_NODES):
datadir=initialize_datadir(cachedir, i)
args = [ os.getenv("BITCOIND", "bitcoind"), "-server", "-keypool=1", "-datadir="+datadir, "-discover=0" ]
if i > 0:
bitcoind_processes[i] = subprocess.Popen(args)
if os.getenv("PYTHON_DEBUG", ""):
print("initialize_chain: bitcoind started, waiting for RPC to come up")
wait_for_bitcoind_start(bitcoind_processes[i], rpc_url(i), i)
if os.getenv("PYTHON_DEBUG", ""):
print("initialize_chain: RPC successfully started")
rpcs = []
for i in range(MAX_NODES):
rpcs.append(get_rpc_proxy(rpc_url(i), i))
sys.stderr.write("Error connecting to "+url+"\n")
# Create a 200-block-long chain; each of the 4 first nodes
# gets 25 mature blocks and 25 immature.
# Note: To preserve compatibility with older versions of
# initialize_chain, only 4 nodes will generate coins.
# blocks are created with timestamps 10 minutes apart
# starting from 2010 minutes in the past
block_time = get_mocktime() - (201 * 10 * 60)
for i in range(2):
for peer in range(4):
for j in range(25):
set_node_times(rpcs, block_time)
block_time += 10*60
# Must sync before next peer starts generating blocks
# Shut them down, and clean up cache directories:
for i in range(MAX_NODES):
os.remove(log_filename(cachedir, i, "debug.log"))
os.remove(log_filename(cachedir, i, "db.log"))
os.remove(log_filename(cachedir, i, "peers.dat"))
os.remove(log_filename(cachedir, i, "fee_estimates.dat"))
for i in range(num_nodes):
from_dir = os.path.join(cachedir, "node"+str(i))
to_dir = os.path.join(test_dir, "node"+str(i))
shutil.copytree(from_dir, to_dir)
initialize_datadir(test_dir, i) # Overwrite port/rpcport in bitcoin.conf
def initialize_chain_clean(test_dir, num_nodes):
Create an empty blockchain and num_nodes wallets.
Useful if a test case wants complete control over initialization.
for i in range(num_nodes):
datadir=initialize_datadir(test_dir, i)
def _rpchost_to_args(rpchost):
'''Convert optional IP:port spec to rpcconnect/rpcport args'''
if rpchost is None:
return []
match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost)
if not match:
raise ValueError('Invalid RPC host spec ' + rpchost)
rpcconnect =
rpcport =
if rpcconnect.startswith('['): # remove IPv6 [...] wrapping
rpcconnect = rpcconnect[1:-1]
rv = ['-rpcconnect=' + rpcconnect]
if rpcport:
rv += ['-rpcport=' + rpcport]
return rv
def start_node(i, dirname, extra_args=None, rpchost=None, timewait=None, binary=None):
Start a bitcoind and return RPC connection to it
datadir = os.path.join(dirname, "node"+str(i))
if binary is None:
binary = os.getenv("BITCOIND", "bitcoind")
args = [ binary, "-datadir="+datadir, "-server", "-keypool=1", "-discover=0", "-rest", "-mocktime="+str(get_mocktime()) ]
if extra_args is not None: args.extend(extra_args)
bitcoind_processes[i] = subprocess.Popen(args)
if os.getenv("PYTHON_DEBUG", ""):
print("start_node: bitcoind started, waiting for RPC to come up")
url = rpc_url(i, rpchost)
wait_for_bitcoind_start(bitcoind_processes[i], url, i)
if os.getenv("PYTHON_DEBUG", ""):
print("start_node: RPC successfully started")
proxy = get_rpc_proxy(url, i, timeout=timewait)
coverage.write_all_rpc_commands(COVERAGE_DIR, proxy)
return proxy
def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None, timewait=None, binary=None):
Start multiple bitcoinds, return RPC connections to them
if extra_args is None: extra_args = [ None for _ in range(num_nodes) ]
if binary is None: binary = [ None for _ in range(num_nodes) ]
rpcs = []
for i in range(num_nodes):
rpcs.append(start_node(i, dirname, extra_args[i], rpchost, timewait=timewait, binary=binary[i]))
except: # If one node failed to start, stop the others
return rpcs
def log_filename(dirname, n_node, logname):
return os.path.join(dirname, "node"+str(n_node), "regtest", logname)
def stop_node(node, i):
except http.client.CannotSendRequest as e:
print("WARN: Unable to stop node: " + repr(e))
del bitcoind_processes[i]
def stop_nodes(nodes):
for node in nodes:
except http.client.CannotSendRequest as e:
print("WARN: Unable to stop node: " + repr(e))
del nodes[:] # Emptying array closes connections as a side effect
def set_node_times(nodes, t):
for node in nodes:
def wait_bitcoinds():
# Wait for all bitcoinds to cleanly exit
for bitcoind in bitcoind_processes.values():
def connect_nodes(from_connection, node_num):
ip_port = ""+str(p2p_port(node_num))
from_connection.addnode(ip_port, "onetry")
# poll until version handshake complete to avoid race conditions
# with transaction relaying
while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()):
def connect_nodes_bi(nodes, a, b):
connect_nodes(nodes[a], b)
connect_nodes(nodes[b], a)
def find_output(node, txid, amount):
Return index to output of txid with value amount
Raises exception if there is none.
txdata = node.getrawtransaction(txid, 1)
for i in range(len(txdata["vout"])):
if txdata["vout"][i]["value"] == amount:
return i
raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount)))
def gather_inputs(from_node, amount_needed, confirmations_required=1):
Return a random set of unspent txouts that are enough to pay amount_needed
assert(confirmations_required >=0)
utxo = from_node.listunspent(confirmations_required)
inputs = []
total_in = Decimal("0.00000000")
while total_in < amount_needed and len(utxo) > 0:
t = utxo.pop()
total_in += t["amount"]
inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } )
if total_in < amount_needed:
raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in))
return (total_in, inputs)
def make_change(from_node, amount_in, amount_out, fee):
Create change output(s), return them
outputs = {}
amount = amount_out+fee
change = amount_in - amount
if change > amount*2:
# Create an extra change output to break up big inputs
change_address = from_node.getnewaddress()
# Split change in two, being careful of rounding:
outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN)
change = amount_in - amount - outputs[change_address]
if change > 0:
outputs[from_node.getnewaddress()] = change
return outputs
def send_zeropri_transaction(from_node, to_node, amount, fee):
Create&broadcast a zero-priority transaction.
Returns (txid, hex-encoded-txdata)
Ensures transaction is zero-priority by first creating a send-to-self,
then using its output
# Create a send-to-self with confirmed inputs:
self_address = from_node.getnewaddress()
(total_in, inputs) = gather_inputs(from_node, amount+fee*2)
outputs = make_change(from_node, total_in, amount+fee, fee)
outputs[self_address] = float(amount+fee)
self_rawtx = from_node.createrawtransaction(inputs, outputs)
self_signresult = from_node.signrawtransaction(self_rawtx)
self_txid = from_node.sendrawtransaction(self_signresult["hex"], True)
vout = find_output(from_node, self_txid, amount+fee)
# Now immediately spend the output to create a 1-input, 1-output
# zero-priority transaction:
inputs = [ { "txid" : self_txid, "vout" : vout } ]
outputs = { to_node.getnewaddress() : float(amount) }
rawtx = from_node.createrawtransaction(inputs, outputs)
signresult = from_node.signrawtransaction(rawtx)
txid = from_node.sendrawtransaction(signresult["hex"], True)
return (txid, signresult["hex"])
def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants):
Create a random zero-priority transaction.
Returns (txid, hex-encoded-transaction-data, fee)
from_node = random.choice(nodes)
to_node = random.choice(nodes)
fee = min_fee + fee_increment*random.randint(0,fee_variants)
(txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee)
return (txid, txhex, fee)
def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants):
Create a random transaction.
Returns (txid, hex-encoded-transaction-data, fee)
from_node = random.choice(nodes)
to_node = random.choice(nodes)
fee = min_fee + fee_increment*random.randint(0,fee_variants)
(total_in, inputs) = gather_inputs(from_node, amount+fee)
outputs = make_change(from_node, total_in, amount, fee)
outputs[to_node.getnewaddress()] = float(amount)
rawtx = from_node.createrawtransaction(inputs, outputs)
signresult = from_node.signrawtransaction(rawtx)
txid = from_node.sendrawtransaction(signresult["hex"], True)
return (txid, signresult["hex"], fee)
def assert_fee_amount(fee, tx_size, fee_per_kB):
"""Assert the fee was in range"""
target_fee = tx_size * fee_per_kB / 1000
if fee < target_fee:
raise AssertionError("Fee of %s BTC too low! (Should be %s BTC)"%(str(fee), str(target_fee)))
# allow the wallet's estimation to be at most 2 bytes off
if fee > (tx_size + 2) * fee_per_kB / 1000:
raise AssertionError("Fee of %s BTC too high! (Should be %s BTC)"%(str(fee), str(target_fee)))
def assert_equal(thing1, thing2):
if thing1 != thing2:
raise AssertionError("%s != %s"%(str(thing1),str(thing2)))
def assert_greater_than(thing1, thing2):
if thing1 <= thing2:
raise AssertionError("%s <= %s"%(str(thing1),str(thing2)))
def assert_raises(exc, fun, *args, **kwds):
assert_raises_message(exc, None, fun, *args, **kwds)
def assert_raises_message(exc, message, fun, *args, **kwds):
fun(*args, **kwds)
except exc as e:
if message is not None and message not in e.error['message']:
raise AssertionError("Expected substring not found:"+e.error['message'])
except Exception as e:
raise AssertionError("Unexpected exception raised: "+type(e).__name__)
raise AssertionError("No exception raised")
def assert_is_hex_string(string):
int(string, 16)
except Exception as e:
raise AssertionError(
"Couldn't interpret %r as hexadecimal; raised: %s" % (string, e))
def assert_is_hash_string(string, length=64):
if not isinstance(string, str):
raise AssertionError("Expected a string, got type %r" % type(string))
elif length and len(string) != length:
raise AssertionError(
"String of length %d expected; got %d" % (length, len(string)))
elif not re.match('[abcdef0-9]+$', string):
raise AssertionError(
"String %r contains invalid characters for a hash." % string)
def assert_array_result(object_array, to_match, expected, should_not_find = False):
Pass in array of JSON objects, a dictionary with key/value pairs
to match against, and another dictionary with expected key/value
If the should_not_find flag is true, to_match should not be found
in object_array
if should_not_find == True:
assert_equal(expected, { })
num_matched = 0
for item in object_array:
all_match = True
for key,value in to_match.items():
if item[key] != value:
all_match = False
if not all_match:
elif should_not_find == True:
num_matched = num_matched+1
for key,value in expected.items():
if item[key] != value:
raise AssertionError("%s : expected %s=%s"%(str(item), str(key), str(value)))
num_matched = num_matched+1
if num_matched == 0 and should_not_find != True:
raise AssertionError("No objects matched %s"%(str(to_match)))
if num_matched > 0 and should_not_find == True:
raise AssertionError("Objects were found %s"%(str(to_match)))
def satoshi_round(amount):
return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN)
# Helper to create at least "count" utxos
# Pass in a fee that is sufficient for relay and mining new transactions.
def create_confirmed_utxos(fee, node, count):
utxos = node.listunspent()
iterations = count - len(utxos)
addr1 = node.getnewaddress()
addr2 = node.getnewaddress()
if iterations <= 0:
return utxos
for i in range(iterations):
t = utxos.pop()
inputs = []
inputs.append({ "txid" : t["txid"], "vout" : t["vout"]})
outputs = {}
send_value = t['amount'] - fee
outputs[addr1] = satoshi_round(send_value/2)
outputs[addr2] = satoshi_round(send_value/2)
raw_tx = node.createrawtransaction(inputs, outputs)
signed_tx = node.signrawtransaction(raw_tx)["hex"]
txid = node.sendrawtransaction(signed_tx)
while (node.getmempoolinfo()['size'] > 0):
utxos = node.listunspent()
assert(len(utxos) >= count)
return utxos
# Create large OP_RETURN txouts that can be appended to a transaction
# to make it large (helper for constructing large transactions).
def gen_return_txouts():
# Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create
# So we have big transactions (and therefore can't fit very many into each block)
# create one script_pubkey
script_pubkey = "6a4d0200" #OP_RETURN OP_PUSH2 512 bytes
for i in range (512):
script_pubkey = script_pubkey + "01"
# concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change
txouts = "81"
for k in range(128):
# add txout value
txouts = txouts + "0000000000000000"
# add length of script_pubkey
txouts = txouts + "fd0402"
# add script_pubkey
txouts = txouts + script_pubkey
return txouts
def create_tx(node, coinbase, to_address, amount):
inputs = [{ "txid" : coinbase, "vout" : 0}]
outputs = { to_address : amount }
rawtx = node.createrawtransaction(inputs, outputs)
signresult = node.signrawtransaction(rawtx)
assert_equal(signresult["complete"], True)
return signresult["hex"]
# Create a spend of each passed-in utxo, splicing in "txouts" to each raw
# transaction to make it large. See gen_return_txouts() above.
def create_lots_of_big_transactions(node, txouts, utxos, fee):
addr = node.getnewaddress()
txids = []
for i in range(len(utxos)):
t = utxos.pop()
inputs = []
inputs.append({ "txid" : t["txid"], "vout" : t["vout"]})
outputs = {}
send_value = t['amount'] - fee
outputs[addr] = satoshi_round(send_value)
rawtx = node.createrawtransaction(inputs, outputs)
newtx = rawtx[0:92]
newtx = newtx + txouts
newtx = newtx + rawtx[94:]
signresult = node.signrawtransaction(newtx, None, None, "NONE")
txid = node.sendrawtransaction(signresult["hex"], True)
return txids
def get_bip9_status(node, key):
info = node.getblockchaininfo()
return info['bip9_softforks'][key]