Browse Source

Update libsecp256k1 to master

pull/1/head
Pieter Wuille 6 years ago
parent
commit
547a53d135
  1. 1
      src/secp256k1/.gitignore
  2. 9
      src/secp256k1/.travis.yml
  3. 18
      src/secp256k1/Makefile.am
  4. 4
      src/secp256k1/build-aux/m4/bitcoin_secp.m4
  5. 30
      src/secp256k1/configure.ac
  6. 14
      src/secp256k1/include/secp256k1.h
  7. 173
      src/secp256k1/include/secp256k1_schnorr.h
  8. 18
      src/secp256k1/src/ecdsa_impl.h
  9. 2
      src/secp256k1/src/ecmult_const_impl.h
  10. 2
      src/secp256k1/src/ecmult_gen_impl.h
  11. 23
      src/secp256k1/src/ecmult_impl.h
  12. 7
      src/secp256k1/src/field.h
  13. 2
      src/secp256k1/src/field_impl.h
  14. 4
      src/secp256k1/src/group.h
  15. 78
      src/secp256k1/src/group_impl.h
  16. 34
      src/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java
  17. 21
      src/secp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java
  18. 34
      src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c
  19. 8
      src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h
  20. 4
      src/secp256k1/src/modules/recovery/main_impl.h
  21. 10
      src/secp256k1/src/modules/schnorr/Makefile.am.include
  22. 164
      src/secp256k1/src/modules/schnorr/main_impl.h
  23. 20
      src/secp256k1/src/modules/schnorr/schnorr.h
  24. 207
      src/secp256k1/src/modules/schnorr/schnorr_impl.h
  25. 175
      src/secp256k1/src/modules/schnorr/tests_impl.h
  26. 4
      src/secp256k1/src/scalar.h
  27. 26
      src/secp256k1/src/scalar_4x64_impl.h
  28. 39
      src/secp256k1/src/scalar_impl.h
  29. 15
      src/secp256k1/src/scalar_low.h
  30. 114
      src/secp256k1/src/scalar_low_impl.h
  31. 4
      src/secp256k1/src/secp256k1.c
  32. 20
      src/secp256k1/src/tests.c
  33. 329
      src/secp256k1/src/tests_exhaustive.c

1
src/secp256k1/.gitignore vendored

@ -6,6 +6,7 @@ bench_schnorr_verify @@ -6,6 +6,7 @@ bench_schnorr_verify
bench_recover
bench_internal
tests
exhaustive_tests
gen_context
*.exe
*.so

9
src/secp256k1/.travis.yml

@ -11,7 +11,7 @@ cache: @@ -11,7 +11,7 @@ cache:
- src/java/guava/
env:
global:
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=no RECOVERY=no EXPERIMENTAL=no
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no
- GUAVA_URL=https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar GUAVA_JAR=src/java/guava/guava-18.0.jar
matrix:
- SCALAR=32bit RECOVERY=yes
@ -22,15 +22,14 @@ env: @@ -22,15 +22,14 @@ env:
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
- FIELD=64bit ASM=x86_64
- FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
- FIELD=32bit SCHNORR=yes EXPERIMENTAL=yes
- FIELD=32bit ENDOMORPHISM=yes
- BIGNUM=no
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes EXPERIMENTAL=yes
- BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes
- BIGNUM=no STATICPRECOMPUTATION=no
- BUILD=distcheck
- EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC
- EXTRAFLAGS=CFLAGS=-O0
- BUILD=check-java ECDH=yes SCHNORR=yes EXPERIMENTAL=yes
- BUILD=check-java ECDH=yes EXPERIMENTAL=yes
matrix:
fast_finish: true
include:
@ -66,5 +65,5 @@ before_script: ./autogen.sh @@ -66,5 +65,5 @@ before_script: ./autogen.sh
script:
- if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
- if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
- ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
- ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
os: linux

18
src/secp256k1/Makefile.am

@ -12,9 +12,11 @@ noinst_HEADERS = @@ -12,9 +12,11 @@ noinst_HEADERS =
noinst_HEADERS += src/scalar.h
noinst_HEADERS += src/scalar_4x64.h
noinst_HEADERS += src/scalar_8x32.h
noinst_HEADERS += src/scalar_low.h
noinst_HEADERS += src/scalar_impl.h
noinst_HEADERS += src/scalar_4x64_impl.h
noinst_HEADERS += src/scalar_8x32_impl.h
noinst_HEADERS += src/scalar_low_impl.h
noinst_HEADERS += src/group.h
noinst_HEADERS += src/group_impl.h
noinst_HEADERS += src/num_gmp.h
@ -87,13 +89,23 @@ bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB) @@ -87,13 +89,23 @@ bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
endif
TESTS =
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DSECP256K1_BUILD -DVERIFY -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
tests_LDFLAGS = -static
TESTS = tests
TESTS += tests
endif
if USE_EXHAUSTIVE_TESTS
noinst_PROGRAMS += exhaustive_tests
exhaustive_tests_SOURCES = src/tests_exhaustive.c
exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -DVERIFY -I$(top_srcdir)/src $(SECP_INCLUDES)
exhaustive_tests_LDADD = $(SECP_LIBS)
exhaustive_tests_LDFLAGS = -static
TESTS += exhaustive_tests
endif
JAVAROOT=src/java
@ -154,10 +166,6 @@ if ENABLE_MODULE_ECDH @@ -154,10 +166,6 @@ if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_SCHNORR
include src/modules/schnorr/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif

4
src/secp256k1/build-aux/m4/bitcoin_secp.m4

@ -46,6 +46,10 @@ if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then @@ -46,6 +46,10 @@ if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then
ECDSA_sign(0, NULL, 0, NULL, NULL, eckey);
ECDSA_verify(0, NULL, 0, NULL, 0, eckey);
EC_KEY_free(eckey);
ECDSA_SIG *sig_openssl;
sig_openssl = ECDSA_SIG_new();
(void)sig_openssl->r;
ECDSA_SIG_free(sig_openssl);
]])],[has_openssl_ec=yes],[has_openssl_ec=no])
AC_MSG_RESULT([$has_openssl_ec])
fi

30
src/secp256k1/configure.ac

@ -104,6 +104,11 @@ AC_ARG_ENABLE(experimental, @@ -104,6 +104,11 @@ AC_ARG_ENABLE(experimental,
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(exhaustive_tests,
AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests (default is yes)]),
[use_exhaustive_tests=$enableval],
[use_exhaustive_tests=yes])
AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
[use_endomorphism=$enableval],
@ -119,11 +124,6 @@ AC_ARG_ENABLE(module_ecdh, @@ -119,11 +124,6 @@ AC_ARG_ENABLE(module_ecdh,
[enable_module_ecdh=$enableval],
[enable_module_ecdh=no])
AC_ARG_ENABLE(module_schnorr,
AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (experimental)]),
[enable_module_schnorr=$enableval],
[enable_module_schnorr=no])
AC_ARG_ENABLE(module_recovery,
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]),
[enable_module_recovery=$enableval],
@ -381,9 +381,6 @@ fi @@ -381,9 +381,6 @@ fi
if test x"$use_jni" != x"no"; then
AX_JNI_INCLUDE_DIR
have_jni_dependencies=yes
if test x"$enable_module_schnorr" = x"no"; then
have_jni_dependencies=no
fi
if test x"$enable_module_ecdh" = x"no"; then
have_jni_dependencies=no
fi
@ -392,7 +389,7 @@ if test x"$use_jni" != x"no"; then @@ -392,7 +389,7 @@ if test x"$use_jni" != x"no"; then
fi
if test "x$have_jni_dependencies" = "xno"; then
if test x"$use_jni" = x"yes"; then
AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and Schnorr and try again.])
AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and try again.])
fi
AC_MSG_WARN([jni headers/dependencies not found. jni support disabled])
use_jni=no
@ -413,7 +410,7 @@ if test x"$use_endomorphism" = x"yes"; then @@ -413,7 +410,7 @@ if test x"$use_endomorphism" = x"yes"; then
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
fi
if test x"$use_ecmult_static_precomputation" = x"yes"; then
if test x"$set_precomp" = x"yes"; then
AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
fi
@ -421,10 +418,6 @@ if test x"$enable_module_ecdh" = x"yes"; then @@ -421,10 +418,6 @@ if test x"$enable_module_ecdh" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
fi
if test x"$enable_module_schnorr" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SCHNORR, 1, [Define this symbol to enable the Schnorr signature module])
fi
if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
@ -442,7 +435,6 @@ AC_MSG_NOTICE([Using bignum implementation: $set_bignum]) @@ -442,7 +435,6 @@ AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
AC_MSG_NOTICE([Using jni: $use_jni])
@ -451,12 +443,8 @@ if test x"$enable_experimental" = x"yes"; then @@ -451,12 +443,8 @@ if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
AC_MSG_NOTICE([******])
else
if test x"$enable_module_schnorr" = x"yes"; then
AC_MSG_ERROR([Schnorr signature module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
@ -473,10 +461,10 @@ AC_SUBST(SECP_LIBS) @@ -473,10 +461,10 @@ AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$use_ecmult_static_precomputation" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORR], [test x"$enable_module_schnorr" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])

14
src/secp256k1/include/secp256k1.h

@ -47,11 +47,8 @@ typedef struct secp256k1_context_struct secp256k1_context; @@ -47,11 +47,8 @@ typedef struct secp256k1_context_struct secp256k1_context;
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
*
* Furthermore, it is guaranteed that identical public keys (ignoring
* compression) will have identical representation, so they can be memcmp'ed.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
*/
typedef struct {
unsigned char data[64];
@ -62,12 +59,9 @@ typedef struct { @@ -62,12 +59,9 @@ typedef struct {
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_serialize_* functions.
*
* Furthermore, it is guaranteed to identical signatures will have identical
* representation, so they can be memcmp'ed.
*/
typedef struct {
unsigned char data[64];

173
src/secp256k1/include/secp256k1_schnorr.h

@ -1,173 +0,0 @@ @@ -1,173 +0,0 @@
#ifndef _SECP256K1_SCHNORR_
# define _SECP256K1_SCHNORR_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Create a signature using a custom EC-Schnorr-SHA256 construction. It
* produces non-malleable 64-byte signatures which support public key recovery
* batch validation, and multiparty signing.
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was
* invalid.
* Args: ctx: pointer to a context object, initialized for signing
* (cannot be NULL)
* Out: sig64: pointer to a 64-byte array where the signature will be
* placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation
* function (can be NULL)
*/
SECP256K1_API int secp256k1_schnorr_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify a signature created by secp256k1_schnorr_sign.
* Returns: 1: correct signature
* 0: incorrect signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig64: the 64-byte signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: the public key to verify with (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
const secp256k1_context* ctx,
const unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an EC public key from a Schnorr signature created using
* secp256k1_schnorr_sign.
* Returns: 1: public key successfully recovered (which guarantees a correct
* signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for
* verification (cannot be NULL)
* Out: pubkey: pointer to a pubkey to set to the recovered public key
* (cannot be NULL).
* In: sig64: signature as 64 byte array (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot
* be NULL)
*/
SECP256K1_API int secp256k1_schnorr_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *sig64,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Generate a nonce pair deterministically for use with
* secp256k1_schnorr_partial_sign.
* Returns: 1: valid nonce pair was generated.
* 0: otherwise (nonce generation function failed)
* Args: ctx: pointer to a context object, initialized for signing
* (cannot be NULL)
* Out: pubnonce: public side of the nonce (cannot be NULL)
* privnonce32: private side of the nonce (32 byte) (cannot be NULL)
* In: msg32: the 32-byte message hash assumed to be signed (cannot
* be NULL)
* sec32: the 32-byte private key (cannot be NULL)
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used
* noncedata: pointer to arbitrary data used by the nonce generation
* function (can be NULL)
*
* Do not use the output as a private/public key pair for signing/validation.
*/
SECP256K1_API int secp256k1_schnorr_generate_nonce_pair(
const secp256k1_context* ctx,
secp256k1_pubkey *pubnonce,
unsigned char *privnonce32,
const unsigned char *msg32,
const unsigned char *sec32,
secp256k1_nonce_function noncefp,
const void* noncedata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Produce a partial Schnorr signature, which can be combined using
* secp256k1_schnorr_partial_combine, to end up with a full signature that is
* verifiable using secp256k1_schnorr_verify.
* Returns: 1: signature created successfully.
* 0: no valid signature exists with this combination of keys, nonces
* and message (chance around 1 in 2^128)
* -1: invalid private key, nonce, or public nonces.
* Args: ctx: pointer to context object, initialized for signing (cannot
* be NULL)
* Out: sig64: pointer to 64-byte array to put partial signature in
* In: msg32: pointer to 32-byte message to sign
* sec32: pointer to 32-byte private key
* pubnonce_others: pointer to pubkey containing the sum of the other's
* nonces (see secp256k1_ec_pubkey_combine)
* secnonce32: pointer to 32-byte array containing our nonce
*
* The intended procedure for creating a multiparty signature is:
* - Each signer S[i] with private key x[i] and public key Q[i] runs
* secp256k1_schnorr_generate_nonce_pair to produce a pair (k[i],R[i]) of
* private/public nonces.
* - All signers communicate their public nonces to each other (revealing your
* private nonce can lead to discovery of your private key, so it should be
* considered secret).
* - All signers combine all the public nonces they received (excluding their
* own) using secp256k1_ec_pubkey_combine to obtain an
* Rall[i] = sum(R[0..i-1,i+1..n]).
* - All signers produce a partial signature using
* secp256k1_schnorr_partial_sign, passing in their own private key x[i],
* their own private nonce k[i], and the sum of the others' public nonces
* Rall[i].
* - All signers communicate their partial signatures to each other.
* - Someone combines all partial signatures using
* secp256k1_schnorr_partial_combine, to obtain a full signature.
* - The resulting signature is validatable using secp256k1_schnorr_verify, with
* public key equal to the result of secp256k1_ec_pubkey_combine of the
* signers' public keys (sum(Q[0..n])).
*
* Note that secp256k1_schnorr_partial_combine and secp256k1_ec_pubkey_combine
* function take their arguments in any order, and it is possible to
* pre-combine several inputs already with one call, and add more inputs later
* by calling the function again (they are commutative and associative).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const unsigned char *sec32,
const secp256k1_pubkey *pubnonce_others,
const unsigned char *secnonce32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Combine multiple Schnorr partial signatures.
* Returns: 1: the passed signatures were successfully combined.
* 0: the resulting signature is not valid (chance of 1 in 2^256)
* -1: some inputs were invalid, or the signatures were not created
* using the same set of nonces
* Args: ctx: pointer to a context object
* Out: sig64: pointer to a 64-byte array to place the combined signature
* (cannot be NULL)
* In: sig64sin: pointer to an array of n pointers to 64-byte input
* signatures
* n: the number of signatures to combine (at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char * const * sig64sin,
size_t n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
# ifdef __cplusplus
}
# endif
#endif

18
src/secp256k1/src/ecdsa_impl.h

@ -203,7 +203,9 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const @@ -203,7 +203,9 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
@ -219,6 +221,21 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const @@ -219,6 +221,21 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
int overflow = 0;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, &overflow);
/* we fully expect overflow */
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
@ -252,6 +269,7 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const @@ -252,6 +269,7 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const
return 1;
}
return 0;
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {

2
src/secp256k1/src/ecmult_const_impl.h

@ -78,7 +78,7 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) { @@ -78,7 +78,7 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
/* Negative numbers will be negated to keep their bit representation below the maximum width */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ (s.d[0] & 1);
bit = flip ^ !secp256k1_scalar_is_even(&s);
/* We check for negative one, since adding 2 to it will cause an overflow */
secp256k1_scalar_negate(&neg_s, &s);
not_neg_one = !secp256k1_scalar_is_one(&neg_s);

2
src/secp256k1/src/ecmult_gen_impl.h

@ -77,7 +77,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx @@ -77,7 +77,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(1024, prec, precj, cb);
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {

23
src/secp256k1/src/ecmult_impl.h

@ -7,15 +7,29 @@ @@ -7,15 +7,29 @@
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include <string.h>
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# define WINDOW_G 8
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# define WINDOW_G 4
# else
# define WINDOW_A 2
# define WINDOW_G 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
@ -25,6 +39,7 @@ @@ -25,6 +39,7 @@
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
@ -103,7 +118,7 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge @@ -103,7 +118,7 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
/* Convert them in batch to affine coordinates. */
secp256k1_ge_set_table_gej_var(n, prea, prej, zr);
secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
/* Convert them to compact storage form. */
for (i = 0; i < n; i++) {
secp256k1_ge_to_storage(&pre[i], &prea[i]);

7
src/secp256k1/src/field.h

@ -30,6 +30,8 @@ @@ -30,6 +30,8 @@
#error "Please select field implementation"
#endif
#include "util.h"
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
@ -50,6 +52,9 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r); @@ -50,6 +52,9 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
@ -110,7 +115,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a); @@ -110,7 +115,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a);
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len);
/** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);

2
src/secp256k1/src/field_impl.h

@ -260,7 +260,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) { @@ -260,7 +260,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#endif
}
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
secp256k1_fe u;
size_t i;
if (len < 1) {

4
src/secp256k1/src/group.h

@ -65,12 +65,12 @@ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); @@ -65,12 +65,12 @@ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb);
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);
/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates (with known z-ratios). zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr);
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such

78
src/secp256k1/src/group_impl.h

@ -11,6 +11,53 @@ @@ -11,6 +11,53 @@
#include "field.h"
#include "group.h"
/* These points can be generated in sage as follows:
*
* 0. Setup a worksheet with the following parameters.
* b = 4 # whatever CURVE_B will be set to
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
* C = EllipticCurve ([F (0), F (b)])
*
* 1. Determine all the small orders available to you. (If there are
* no satisfactory ones, go back and change b.)
* print C.order().factor(limit=1000)
*
* 2. Choose an order as one of the prime factors listed in the above step.
* (You can also multiply some to get a composite order, though the
* tests will crash trying to invert scalars during signing.) We take a
* random point and scale it to drop its order to the desired value.
* There is some probability this won't work; just try again.
* order = 199
* P = C.random_point()
* P = (int(P.order()) / int(order)) * P
* assert(P.order() == order)
*
* 3. Print the values. You'll need to use a vim macro or something to
* split the hex output into 4-byte chunks.
* print "%x %x" % P.xy()
*/
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 199
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
);
const int CURVE_B = 4;
# elif EXHAUSTIVE_TEST_ORDER == 13
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
);
const int CURVE_B = 2;
# else
# error No known generator for the specified exhaustive test group order.
# endif
#else
/** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/
@ -21,8 +68,11 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( @@ -21,8 +68,11 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);
const int CURVE_B = 7;
#endif
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
@ -76,7 +126,7 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { @@ -76,7 +126,7 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
r->y = a->y;
}
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
secp256k1_fe *az;
secp256k1_fe *azi;
size_t i;
@ -89,7 +139,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp @@ -89,7 +139,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp
}
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
secp256k1_fe_inv_all_var(count, azi, az);
secp256k1_fe_inv_all_var(azi, az, count);
free(az);
count = 0;
@ -102,7 +152,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp @@ -102,7 +152,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp
free(azi);
}
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
size_t i = len - 1;
secp256k1_fe zi;
@ -145,9 +195,15 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp @@ -145,9 +195,15 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
r->infinity = 1;
secp256k1_fe_set_int(&r->x, 0);
secp256k1_fe_set_int(&r->y, 0);
secp256k1_fe_set_int(&r->z, 0);
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {
@ -169,7 +225,7 @@ static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { @@ -169,7 +225,7 @@ static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&c, &x3);
return secp256k1_fe_sqrt(&r->y, &c);
}
@ -228,7 +284,7 @@ static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { @@ -228,7 +284,7 @@ static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, 7);
secp256k1_fe_mul_int(&z6, CURVE_B);
secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
@ -242,7 +298,7 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { @@ -242,7 +298,7 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
/* y^2 = x^3 + 7 */
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&x3, &c);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
@ -260,7 +316,7 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s @@ -260,7 +316,7 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
*
*
* Having said this, if this function receives a point on a sextic twist, e.g. by
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
* since -6 does have a cube root mod p. For this point, this function will not set

34
src/secp256k1/src/java/org/bitcoin/NativeSecp256k1.java

@ -32,7 +32,7 @@ import static org.bitcoin.NativeSecp256k1Util.*; @@ -32,7 +32,7 @@ import static org.bitcoin.NativeSecp256k1Util.*;
* <p>You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1</p>
*
* <p>To build secp256k1 for use with bitcoinj, run
* `./configure --enable-jni --enable-experimental --enable-module-schnorr --enable-module-ecdh`
* `./configure --enable-jni --enable-experimental --enable-module-ecdh`
* and `make` then copy `.libs/libsecp256k1.so` to your system library path
* or point the JVM to the folder containing it with -Djava.library.path
* </p>
@ -417,36 +417,6 @@ public class NativeSecp256k1 { @@ -417,36 +417,6 @@ public class NativeSecp256k1 {
}
}
public static byte[] schnorrSign(byte[] data, byte[] sec) throws AssertFailException {
Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null) {
byteBuff = ByteBuffer.allocateDirect(32 + 32);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(sec);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_schnorr_sign(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] sigArr = retByteArray[0];
int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
assertEquals(sigArr.length, 64, "Got bad signature length.");
return retVal == 0 ? new byte[0] : sigArr;
}
private static native long secp256k1_ctx_clone(long context);
private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context);
@ -471,8 +441,6 @@ public class NativeSecp256k1 { @@ -471,8 +441,6 @@ public class NativeSecp256k1 {
private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen);
private static native byte[][] secp256k1_schnorr_sign(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen);
}

21
src/secp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java

@ -167,22 +167,6 @@ public class NativeSecp256k1Test { @@ -167,22 +167,6 @@ public class NativeSecp256k1Test {
assertEquals( result, true, "testRandomize");
}
/**
* This tests signSchnorr() for a valid secretkey
*/
public static void testSchnorrSign() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.schnorrSign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "C5E929AA058B982048760422D3B563749B7D0E50C5EBD8CD2FFC23214BD6A2F1B072C13880997EBA847CF20F2F90FCE07C1CA33A890A4127095A351127F8D95F" , "testSchnorrSign");
}
/**
* This tests signSchnorr() for a valid secretkey
*/
public static void testCreateECDHSecret() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
@ -216,11 +200,6 @@ public class NativeSecp256k1Test { @@ -216,11 +200,6 @@ public class NativeSecp256k1Test {
testSignPos();
testSignNeg();
//Test Schnorr (partial support) //TODO
testSchnorrSign();
//testSchnorrVerify
//testSchnorrRecovery
//Test privKeyTweakAdd() 1
testPrivKeyTweakAdd_1();

34
src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.c

@ -5,7 +5,6 @@ @@ -5,7 +5,6 @@
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "include/secp256k1_recovery.h"
#include "include/secp256k1_schnorr.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
@ -333,39 +332,6 @@ SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1p @@ -333,39 +332,6 @@ SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1p
return 0;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1schnorr_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
unsigned char* secKey = (unsigned char*) (data + 32);
jobjectArray retArray;
jbyteArray sigArray, intsByteArray;
unsigned char intsarray[1];
unsigned char sig[64];
int ret = secp256k1_schnorr_sign(ctx, sig, data, secKey, NULL, NULL);
intsarray[0] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
sigArray = (*env)->NewByteArray(env, 64);
(*env)->SetByteArrayRegion(env, sigArray, 0, 64, (jbyte*)sig);
(*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
intsByteArray = (*env)->NewByteArray(env, 1);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{

8
src/secp256k1/src/java/org_bitcoin_NativeSecp256k1.h

@ -104,14 +104,6 @@ SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1e @@ -104,14 +104,6 @@ SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1e
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_schnorr_sign
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1schnorr_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdh

4
src/secp256k1/src/modules/recovery/main_impl.h

@ -138,16 +138,15 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecd @@ -138,16 +138,15 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecd
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
unsigned char nonce32[32];
unsigned int count = 0;
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
unsigned char nonce32[32];
ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
memset(nonce32, 0, 32);
if (!secp256k1_scalar_is_zero(&non) && !overflow) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) {
break;
@ -155,6 +154,7 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecd @@ -155,6 +154,7 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecd
}
count++;
}
memset(nonce32, 0, 32);
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);

10
src/secp256k1/src/modules/schnorr/Makefile.am.include

@ -1,10 +0,0 @@ @@ -1,10 +0,0 @@
include_HEADERS += include/secp256k1_schnorr.h
noinst_HEADERS += src/modules/schnorr/main_impl.h
noinst_HEADERS += src/modules/schnorr/schnorr.h
noinst_HEADERS += src/modules/schnorr/schnorr_impl.h
noinst_HEADERS += src/modules/schnorr/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_schnorr_verify
bench_schnorr_verify_SOURCES = src/bench_schnorr_verify.c
bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

164
src/secp256k1/src/modules/schnorr/main_impl.h

@ -1,164 +0,0 @@ @@ -1,164 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_SCHNORR_MAIN
#define SECP256K1_MODULE_SCHNORR_MAIN
#include "include/secp256k1_schnorr.h"
#include "modules/schnorr/schnorr_impl.h"
static void secp256k1_schnorr_msghash_sha256(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
secp256k1_sha256_t sha;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, r32, 32);
secp256k1_sha256_write(&sha, msg32, 32);
secp256k1_sha256_finalize(&sha, h32);
}
static const unsigned char secp256k1_schnorr_algo16[17] = "Schnorr+SHA256 ";
int secp256k1_schnorr_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
secp256k1_scalar sec, non;
int ret = 0;
int overflow = 0;
unsigned int count = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sig64 != NULL);
ARG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
}
secp256k1_scalar_set_b32(&sec, seckey, NULL);
while (1) {
unsigned char nonce32[32];
ret = noncefp(nonce32, msg32, seckey, secp256k1_schnorr_algo16, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
memset(nonce32, 0, 32);
if (!secp256k1_scalar_is_zero(&non) && !overflow) {
if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, NULL, secp256k1_schnorr_msghash_sha256, msg32)) {
break;
}
}
count++;
}
if (!ret) {
memset(sig64, 0, 64);
}
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
return ret;
}
int secp256k1_schnorr_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
secp256k1_ge q;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sig64 != NULL);
ARG_CHECK(pubkey != NULL);
secp256k1_pubkey_load(ctx, &q, pubkey);
return secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32);
}
int secp256k1_schnorr_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *sig64, const unsigned char *msg32) {
secp256k1_ge q;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sig64 != NULL);
ARG_CHECK(pubkey != NULL);
if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32)) {
secp256k1_pubkey_save(pubkey, &q);
return 1;
} else {
memset(pubkey, 0, sizeof(*pubkey));
return 0;
}
}
int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function noncefp, const void* noncedata) {
int count = 0;
int ret = 1;
secp256k1_gej Qj;
secp256k1_ge Q;
secp256k1_scalar sec;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sec32 != NULL);
ARG_CHECK(pubnonce != NULL);
ARG_CHECK(privnonce32 != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
}
do {
int overflow;
ret = noncefp(privnonce32, sec32, msg32, secp256k1_schnorr_algo16, (void*)noncedata, count++);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&sec, privnonce32, &overflow);
if (overflow || secp256k1_scalar_is_zero(&sec)) {
continue;
}
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sec);
secp256k1_ge_set_gej(&Q, &Qj);
secp256k1_pubkey_save(pubnonce, &Q);
break;
} while(1);
secp256k1_scalar_clear(&sec);
if (!ret) {
memset(pubnonce, 0, sizeof(*pubnonce));
}
return ret;
}
int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey *pubnonce_others, const unsigned char *secnonce32) {
int overflow = 0;
secp256k1_scalar sec, non;
secp256k1_ge pubnon;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sig64 != NULL);
ARG_CHECK(sec32 != NULL);
ARG_CHECK(secnonce32 != NULL);
ARG_CHECK(pubnonce_others != NULL);
secp256k1_scalar_set_b32(&sec, sec32, &overflow);
if (overflow || secp256k1_scalar_is_zero(&sec)) {
return -1;
}
secp256k1_scalar_set_b32(&non, secnonce32, &overflow);
if (overflow || secp256k1_scalar_is_zero(&non)) {
return -1;
}
secp256k1_pubkey_load(ctx, &pubnon, pubnonce_others);
return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32);
}
int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, size_t n) {
ARG_CHECK(sig64 != NULL);
ARG_CHECK(n >= 1);
ARG_CHECK(sig64sin != NULL);
return secp256k1_schnorr_sig_combine(sig64, n, sig64sin);
}
#endif

20
src/secp256k1/src/modules/schnorr/schnorr.h

@ -1,20 +0,0 @@ @@ -1,20 +0,0 @@
/***********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
***********************************************************************/
#ifndef _SECP256K1_MODULE_SCHNORR_H_
#define _SECP256K1_MODULE_SCHNORR_H_
#include "scalar.h"
#include "group.h"
typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32);
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, size_t n, const unsigned char * const *sig64ins);
#endif

207
src/secp256k1/src/modules/schnorr/schnorr_impl.h

@ -1,207 +0,0 @@ @@ -1,207 +0,0 @@
/***********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
***********************************************************************/
#ifndef _SECP256K1_SCHNORR_IMPL_H_
#define _SECP256K1_SCHNORR_IMPL_H_
#include <string.h>
#include "schnorr.h"
#include "num.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
/**
* Custom Schnorr-based signature scheme. They support multiparty signing, public key
* recovery and batch validation.
*
* Rationale for verifying R's y coordinate:
* In order to support batch validation and public key recovery, the full R point must
* be known to verifiers, rather than just its x coordinate. In order to not risk
* being more strict in batch validation than normal validation, validators must be
* required to reject signatures with incorrect y coordinate. This is only possible
* by including a (relatively slow) field inverse, or a field square root. However,
* batch validation offers potentially much higher benefits than this cost.
*
* Rationale for having an implicit y coordinate oddness:
* If we commit to having the full R point known to verifiers, there are two mechanism.
* Either include its oddness in the signature, or give it an implicit fixed value.
* As the R y coordinate can be flipped by a simple negation of the nonce, we choose the
* latter, as it comes with nearly zero impact on signing or validation performance, and
* saves a byte in the signature.
*
* Signing:
* Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0)
*
* Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce).
* Compute 32-byte r, the serialization of R's x coordinate.
* Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order.
* Compute scalar s = k - h * x.
* The signature is (r, s).
*
*
* Verification:
* Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s)
*
* Signature is invalid if s >= order.
* Signature is invalid if r >= p.
* Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order.
* Option 1 (faster for single verification):
* Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd.
* Signature is valid if the serialization of R's x coordinate equals r.
* Option 2 (allows batch validation and pubkey recovery):
* Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve.
* Signature is valid if R + h * Q + s * G == 0.
*/
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
secp256k1_gej Rj;
secp256k1_ge Ra;
unsigned char h32[32];
secp256k1_scalar h, s;
int overflow;
secp256k1_scalar n;
if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) {
return 0;
}
n = *nonce;
secp256k1_ecmult_gen(ctx, &Rj, &n);
if (pubnonce != NULL) {
secp256k1_gej_add_ge(&Rj, &Rj, pubnonce);
}
secp256k1_ge_set_gej(&Ra, &Rj);
secp256k1_fe_normalize(&Ra.y);
if (secp256k1_fe_is_odd(&Ra.y)) {
/* R's y coordinate is odd, which is not allowed (see rationale above).
Force it to be even by negating the nonce. Note that this even works
for multiparty signing, as the R point is known to all participants,
which can all decide to flip the sign in unison, resulting in the
overall R point to be negated too. */
secp256k1_scalar_negate(&n, &n);
}
secp256k1_fe_normalize(&Ra.x);
secp256k1_fe_get_b32(sig64, &Ra.x);
hash(h32, sig64, msg32);
overflow = 0;
secp256k1_scalar_set_b32(&h, h32, &overflow);
if (overflow || secp256k1_scalar_is_zero(&h)) {
secp256k1_scalar_clear(&n);
return 0;
}
secp256k1_scalar_mul(&s, &h, key);
secp256k1_scalar_negate(&s, &s);
secp256k1_scalar_add(&s, &s, &n);
secp256k1_scalar_clear(&n);
secp256k1_scalar_get_b32(sig64 + 32, &s);
return 1;
}
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
secp256k1_gej Qj, Rj;
secp256k1_ge Ra;
secp256k1_fe Rx;
secp256k1_scalar h, s;
unsigned char hh[32];
int overflow;
if (secp256k1_ge_is_infinity(pubkey)) {
return 0;
}
hash(hh, sig64, msg32);
overflow = 0;
secp256k1_scalar_set_b32(&h, hh, &overflow);