You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

193 lines
6.3 KiB

13 years ago
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2017 The Starwels developers
// Copyright (c) 2017 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or
13 years ago
#include <pubkey.h>
#include <serialize.h>
#include <support/allocators/secure.h>
#include <uint256.h>
#include <stdexcept>
#include <vector>
* secure_allocator is defined in allocators.h
* CPrivKey is a serialized private key, with all parameters included
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
13 years ago
/** An encapsulated private key. */
class CKey
* secp256k1:
static const unsigned int PRIVATE_KEY_SIZE = 279;
static const unsigned int COMPRESSED_PRIVATE_KEY_SIZE = 214;
* see
* script supports up to 75 for single byte push
//! Whether this private key is valid. We check for correctness when modifying the key
//! data, so fValid should always correspond to the actual state.
bool fValid;
//! Whether the public key corresponding to this private key is (to be) compressed.
bool fCompressed;
//! The actual byte data
std::vector<unsigned char, secure_allocator<unsigned char> > keydata;
//! Check whether the 32-byte array pointed to by vch is valid keydata.
bool static Check(const unsigned char* vch);
//! Construct an invalid private key.
CKey() : fValid(false), fCompressed(false)
// Important: vch must be 32 bytes in length to not break serialization
friend bool operator==(const CKey& a, const CKey& b)
return a.fCompressed == b.fCompressed &&
a.size() == b.size() &&
memcmp(,, a.size()) == 0;
//! Initialize using begin and end iterators to byte data.
template <typename T>
void Set(const T pbegin, const T pend, bool fCompressedIn)
if (size_t(pend - pbegin) != keydata.size()) {
fValid = false;
} else if (Check(&pbegin[0])) {
memcpy(, (unsigned char*)&pbegin[0], keydata.size());
fValid = true;
fCompressed = fCompressedIn;
} else {
fValid = false;
//! Simple read-only vector-like interface.
unsigned int size() const { return (fValid ? keydata.size() : 0); }
const unsigned char* begin() const { return; }
const unsigned char* end() const { return + size(); }
//! Check whether this private key is valid.
bool IsValid() const { return fValid; }
13 years ago
//! Check whether the public key corresponding to this private key is (to be) compressed.
bool IsCompressed() const { return fCompressed; }
//! Generate a new private key using a cryptographic PRNG.
void MakeNewKey(bool fCompressed);
* Convert the private key to a CPrivKey (serialized OpenSSL private key data).
* This is expensive.
CPrivKey GetPrivKey() const;
* Compute the public key from a private key.
* This is expensive.
CPubKey GetPubKey() const;
* Create a DER-serialized signature.
* The test_case parameter tweaks the deterministic nonce.
bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, uint32_t test_case = 0) const;
13 years ago
* Create a compact signature (65 bytes), which allows reconstructing the used public key.
* The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
* The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
* 0x1D = second key with even y, 0x1E = second key with odd y,
* add 0x04 for compressed keys.
bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
//! Derive BIP32 child key.
bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
* Verify thoroughly whether a private key and a public key match.
* This is done using a different mechanism than just regenerating it.
bool VerifyPubKey(const CPubKey& vchPubKey) const;
//! Load private key and check that public key matches.
bool Load(const CPrivKey& privkey, const CPubKey& vchPubKey, bool fSkipCheck);
struct CExtKey {
unsigned char nDepth;
unsigned char vchFingerprint[4];
unsigned int nChild;
ChainCode chaincode;
CKey key;
friend bool operator==(const CExtKey& a, const CExtKey& b)
return a.nDepth == b.nDepth &&
memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], sizeof(vchFingerprint)) == 0 &&
a.nChild == b.nChild &&
a.chaincode == b.chaincode &&
a.key == b.key;
void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
bool Derive(CExtKey& out, unsigned int nChild) const;
CExtPubKey Neuter() const;
void SetMaster(const unsigned char* seed, unsigned int nSeedLen);
template <typename Stream>
void Serialize(Stream& s) const
unsigned int len = BIP32_EXTKEY_SIZE;
::WriteCompactSize(s, len);
unsigned char code[BIP32_EXTKEY_SIZE];
s.write((const char *)&code[0], len);
template <typename Stream>
void Unserialize(Stream& s)
unsigned int len = ::ReadCompactSize(s);
unsigned char code[BIP32_EXTKEY_SIZE];
if (len != BIP32_EXTKEY_SIZE)
throw std::runtime_error("Invalid extended key size\n"); *)&code[0], len);
13 years ago
/** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
void ECC_Start(void);
/** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
void ECC_Stop(void);
/** Check that required EC support is available at runtime. */
bool ECC_InitSanityCheck(void);
#endif // STARWELS_KEY_H