Only create signatures with even S, and verification mode to check.
To fix a minor malleability found by Sergio Lerner (reported here:
https://bitcointalk.org/index.php?topic=8392.msg1245898#msg1245898)
The problem is that if (R,S) is a valid ECDSA signature for a given
message and public key, (R,-S) is also valid. Modulo N (the order
of the secp256k1 curve), this means that both (R,S) and (R,N-S) are
valid. Given that N is odd, S and N-S have a different lowest bit.
We solve the problem by forcing signatures to have an even S value,
excluding one of the alternatives.
This commit just changes the signing code to always produce even S
values, and adds a verification mode to check it. This code is not
enabled anywhere yet. Existing tests in key_tests.cpp verify that
the produced signatures are still valid.
8 years ago Only create signatures with even S, and verification mode to check.
To fix a minor malleability found by Sergio Lerner (reported here:
https://bitcointalk.org/index.php?topic=8392.msg1245898#msg1245898)
The problem is that if (R,S) is a valid ECDSA signature for a given
message and public key, (R,-S) is also valid. Modulo N (the order
of the secp256k1 curve), this means that both (R,S) and (R,N-S) are
valid. Given that N is odd, S and N-S have a different lowest bit.
We solve the problem by forcing signatures to have an even S value,
excluding one of the alternatives.
This commit just changes the signing code to always produce even S
values, and adds a verification mode to check it. This code is not
enabled anywhere yet. Existing tests in key_tests.cpp verify that
the produced signatures are still valid.
8 years ago Only create signatures with even S, and verification mode to check.
To fix a minor malleability found by Sergio Lerner (reported here:
https://bitcointalk.org/index.php?topic=8392.msg1245898#msg1245898)
The problem is that if (R,S) is a valid ECDSA signature for a given
message and public key, (R,-S) is also valid. Modulo N (the order
of the secp256k1 curve), this means that both (R,S) and (R,N-S) are
valid. Given that N is odd, S and N-S have a different lowest bit.
We solve the problem by forcing signatures to have an even S value,
excluding one of the alternatives.
This commit just changes the signing code to always produce even S
values, and adds a verification mode to check it. This code is not
enabled anywhere yet. Existing tests in key_tests.cpp verify that
the produced signatures are still valid.
8 years ago |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615 |
- // Copyright (c) 2009-2013 The Bitcoin developers
- // Distributed under the MIT/X11 software license, see the accompanying
- // file COPYING or http://www.opensource.org/licenses/mit-license.php.
-
- #include "key.h"
-
- #include <openssl/bn.h>
- #include <openssl/ecdsa.h>
- #include <openssl/obj_mac.h>
- #include <openssl/rand.h>
-
- // anonymous namespace with local implementation code (OpenSSL interaction)
- namespace {
-
- // Generate a private key from just the secret parameter
- int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
- {
- int ok = 0;
- BN_CTX *ctx = NULL;
- EC_POINT *pub_key = NULL;
-
- if (!eckey) return 0;
-
- const EC_GROUP *group = EC_KEY_get0_group(eckey);
-
- if ((ctx = BN_CTX_new()) == NULL)
- goto err;
-
- pub_key = EC_POINT_new(group);
-
- if (pub_key == NULL)
- goto err;
-
- if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
- goto err;
-
- EC_KEY_set_private_key(eckey,priv_key);
- EC_KEY_set_public_key(eckey,pub_key);
-
- ok = 1;
-
- err:
-
- if (pub_key)
- EC_POINT_free(pub_key);
- if (ctx != NULL)
- BN_CTX_free(ctx);
-
- return(ok);
- }
-
- // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
- // recid selects which key is recovered
- // if check is non-zero, additional checks are performed
- int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
- {
- if (!eckey) return 0;
-
- int ret = 0;
- BN_CTX *ctx = NULL;
-
- BIGNUM *x = NULL;
- BIGNUM *e = NULL;
- BIGNUM *order = NULL;
- BIGNUM *sor = NULL;
- BIGNUM *eor = NULL;
- BIGNUM *field = NULL;
- EC_POINT *R = NULL;
- EC_POINT *O = NULL;
- EC_POINT *Q = NULL;
- BIGNUM *rr = NULL;
- BIGNUM *zero = NULL;
- int n = 0;
- int i = recid / 2;
-
- const EC_GROUP *group = EC_KEY_get0_group(eckey);
- if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
- BN_CTX_start(ctx);
- order = BN_CTX_get(ctx);
- if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
- x = BN_CTX_get(ctx);
- if (!BN_copy(x, order)) { ret=-1; goto err; }
- if (!BN_mul_word(x, i)) { ret=-1; goto err; }
- if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
- field = BN_CTX_get(ctx);
- if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
- if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
- if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
- if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
- if (check)
- {
- if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
- if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
- if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
- }
- if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
- n = EC_GROUP_get_degree(group);
- e = BN_CTX_get(ctx);
- if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
- if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
- zero = BN_CTX_get(ctx);
- if (!BN_zero(zero)) { ret=-1; goto err; }
- if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
- rr = BN_CTX_get(ctx);
- if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
- sor = BN_CTX_get(ctx);
- if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
- eor = BN_CTX_get(ctx);
- if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
- if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
- if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
-
- ret = 1;
-
- err:
- if (ctx) {
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- }
- if (R != NULL) EC_POINT_free(R);
- if (O != NULL) EC_POINT_free(O);
- if (Q != NULL) EC_POINT_free(Q);
- return ret;
- }
-
- // RAII Wrapper around OpenSSL's EC_KEY
- class CECKey {
- private:
- EC_KEY *pkey;
-
- public:
- CECKey() {
- pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
- assert(pkey != NULL);
- }
-
- ~CECKey() {
- EC_KEY_free(pkey);
- }
-
- void GetSecretBytes(unsigned char vch[32]) const {
- const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
- assert(bn);
- int nBytes = BN_num_bytes(bn);
- int n=BN_bn2bin(bn,&vch[32 - nBytes]);
- assert(n == nBytes);
- memset(vch, 0, 32 - nBytes);
- }
-
- void SetSecretBytes(const unsigned char vch[32]) {
- BIGNUM bn;
- BN_init(&bn);
- assert(BN_bin2bn(vch, 32, &bn));
- assert(EC_KEY_regenerate_key(pkey, &bn));
- BN_clear_free(&bn);
- }
-
- void GetPrivKey(CPrivKey &privkey, bool fCompressed) {
- EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
- int nSize = i2d_ECPrivateKey(pkey, NULL);
- assert(nSize);
- privkey.resize(nSize);
- unsigned char* pbegin = &privkey[0];
- int nSize2 = i2d_ECPrivateKey(pkey, &pbegin);
- assert(nSize == nSize2);
- }
-
- bool SetPrivKey(const CPrivKey &privkey, bool fSkipCheck=false) {
- const unsigned char* pbegin = &privkey[0];
- if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) {
- if(fSkipCheck)
- return true;
-
- // d2i_ECPrivateKey returns true if parsing succeeds.
- // This doesn't necessarily mean the key is valid.
- if (EC_KEY_check_key(pkey))
- return true;
- }
- return false;
- }
-
- void GetPubKey(CPubKey &pubkey, bool fCompressed) {
- EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
- int nSize = i2o_ECPublicKey(pkey, NULL);
- assert(nSize);
- assert(nSize <= 65);
- unsigned char c[65];
- unsigned char *pbegin = c;
- int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
- assert(nSize == nSize2);
- pubkey.Set(&c[0], &c[nSize]);
- }
-
- bool SetPubKey(const CPubKey &pubkey) {
- const unsigned char* pbegin = pubkey.begin();
- return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size());
- }
-
- bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) {
- vchSig.clear();
- ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
- if (sig == NULL)
- return false;
- BN_CTX *ctx = BN_CTX_new();
- BN_CTX_start(ctx);
- const EC_GROUP *group = EC_KEY_get0_group(pkey);
- BIGNUM *order = BN_CTX_get(ctx);
- BIGNUM *halforder = BN_CTX_get(ctx);
- EC_GROUP_get_order(group, order, ctx);
- BN_rshift1(halforder, order);
- if (BN_cmp(sig->s, halforder) > 0) {
- // enforce low S values, by negating the value (modulo the order) if above order/2.
- BN_sub(sig->s, order, sig->s);
- }
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- unsigned int nSize = ECDSA_size(pkey);
- vchSig.resize(nSize); // Make sure it is big enough
- unsigned char *pos = &vchSig[0];
- nSize = i2d_ECDSA_SIG(sig, &pos);
- ECDSA_SIG_free(sig);
- vchSig.resize(nSize); // Shrink to fit actual size
- return true;
- }
-
- bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
- // -1 = error, 0 = bad sig, 1 = good
- if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
- return false;
- return true;
- }
-
- bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
- bool fOk = false;
- ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
- if (sig==NULL)
- return false;
- memset(p64, 0, 64);
- int nBitsR = BN_num_bits(sig->r);
- int nBitsS = BN_num_bits(sig->s);
- if (nBitsR <= 256 && nBitsS <= 256) {
- CPubKey pubkey;
- GetPubKey(pubkey, true);
- for (int i=0; i<4; i++) {
- CECKey keyRec;
- if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
- CPubKey pubkeyRec;
- keyRec.GetPubKey(pubkeyRec, true);
- if (pubkeyRec == pubkey) {
- rec = i;
- fOk = true;
- break;
- }
- }
- }
- assert(fOk);
- BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
- BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
- }
- ECDSA_SIG_free(sig);
- return fOk;
- }
-
- // reconstruct public key from a compact signature
- // This is only slightly more CPU intensive than just verifying it.
- // If this function succeeds, the recovered public key is guaranteed to be valid
- // (the signature is a valid signature of the given data for that key)
- bool Recover(const uint256 &hash, const unsigned char *p64, int rec)
- {
- if (rec<0 || rec>=3)
- return false;
- ECDSA_SIG *sig = ECDSA_SIG_new();
- BN_bin2bn(&p64[0], 32, sig->r);
- BN_bin2bn(&p64[32], 32, sig->s);
- bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
- ECDSA_SIG_free(sig);
- return ret;
- }
-
- static bool TweakSecret(unsigned char vchSecretOut[32], const unsigned char vchSecretIn[32], const unsigned char vchTweak[32])
- {
- bool ret = true;
- BN_CTX *ctx = BN_CTX_new();
- BN_CTX_start(ctx);
- BIGNUM *bnSecret = BN_CTX_get(ctx);
- BIGNUM *bnTweak = BN_CTX_get(ctx);
- BIGNUM *bnOrder = BN_CTX_get(ctx);
- EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp256k1);
- EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
- BN_bin2bn(vchTweak, 32, bnTweak);
- if (BN_cmp(bnTweak, bnOrder) >= 0)
- ret = false; // extremely unlikely
- BN_bin2bn(vchSecretIn, 32, bnSecret);
- BN_add(bnSecret, bnSecret, bnTweak);
- BN_nnmod(bnSecret, bnSecret, bnOrder, ctx);
- if (BN_is_zero(bnSecret))
- ret = false; // ridiculously unlikely
- int nBits = BN_num_bits(bnSecret);
- memset(vchSecretOut, 0, 32);
- BN_bn2bin(bnSecret, &vchSecretOut[32-(nBits+7)/8]);
- EC_GROUP_free(group);
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- return ret;
- }
-
- bool TweakPublic(const unsigned char vchTweak[32]) {
- bool ret = true;
- BN_CTX *ctx = BN_CTX_new();
- BN_CTX_start(ctx);
- BIGNUM *bnTweak = BN_CTX_get(ctx);
- BIGNUM *bnOrder = BN_CTX_get(ctx);
- BIGNUM *bnOne = BN_CTX_get(ctx);
- const EC_GROUP *group = EC_KEY_get0_group(pkey);
- EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
- BN_bin2bn(vchTweak, 32, bnTweak);
- if (BN_cmp(bnTweak, bnOrder) >= 0)
- ret = false; // extremely unlikely
- EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group);
- BN_one(bnOne);
- EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx);
- if (EC_POINT_is_at_infinity(group, point))
- ret = false; // ridiculously unlikely
- EC_KEY_set_public_key(pkey, point);
- EC_POINT_free(point);
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- return ret;
- }
- };
-
- }; // end of anonymous namespace
-
- bool CKey::Check(const unsigned char *vch) {
- // Do not convert to OpenSSL's data structures for range-checking keys,
- // it's easy enough to do directly.
- static const unsigned char vchMax[32] = {
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
- 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
- 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
- };
- bool fIsZero = true;
- for (int i=0; i<32 && fIsZero; i++)
- if (vch[i] != 0)
- fIsZero = false;
- if (fIsZero)
- return false;
- for (int i=0; i<32; i++) {
- if (vch[i] < vchMax[i])
- return true;
- if (vch[i] > vchMax[i])
- return false;
- }
- return true;
- }
-
- void CKey::MakeNewKey(bool fCompressedIn) {
- do {
- RAND_bytes(vch, sizeof(vch));
- } while (!Check(vch));
- fValid = true;
- fCompressed = fCompressedIn;
- }
-
- bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
- CECKey key;
- if (!key.SetPrivKey(privkey))
- return false;
- key.GetSecretBytes(vch);
- fCompressed = fCompressedIn;
- fValid = true;
- return true;
- }
-
- CPrivKey CKey::GetPrivKey() const {
- assert(fValid);
- CECKey key;
- key.SetSecretBytes(vch);
- CPrivKey privkey;
- key.GetPrivKey(privkey, fCompressed);
- return privkey;
- }
-
- CPubKey CKey::GetPubKey() const {
- assert(fValid);
- CECKey key;
- key.SetSecretBytes(vch);
- CPubKey pubkey;
- key.GetPubKey(pubkey, fCompressed);
- return pubkey;
- }
-
- bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
- if (!fValid)
- return false;
- CECKey key;
- key.SetSecretBytes(vch);
- return key.Sign(hash, vchSig);
- }
-
- bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
- if (!fValid)
- return false;
- CECKey key;
- key.SetSecretBytes(vch);
- vchSig.resize(65);
- int rec = -1;
- if (!key.SignCompact(hash, &vchSig[1], rec))
- return false;
- assert(rec != -1);
- vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
- return true;
- }
-
- bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) {
- CECKey key;
- if (!key.SetPrivKey(privkey, fSkipCheck))
- return false;
-
- key.GetSecretBytes(vch);
- fCompressed = vchPubKey.IsCompressed();
- fValid = true;
-
- if (fSkipCheck)
- return true;
-
- if (GetPubKey() != vchPubKey)
- return false;
-
- return true;
- }
-
- bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
- if (!IsValid())
- return false;
- CECKey key;
- if (!key.SetPubKey(*this))
- return false;
- if (!key.Verify(hash, vchSig))
- return false;
- return true;
- }
-
- bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
- if (vchSig.size() != 65)
- return false;
- CECKey key;
- if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
- return false;
- key.GetPubKey(*this, (vchSig[0] - 27) & 4);
- return true;
- }
-
- bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
- if (!IsValid())
- return false;
- if (vchSig.size() != 65)
- return false;
- CECKey key;
- if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
- return false;
- CPubKey pubkeyRec;
- key.GetPubKey(pubkeyRec, IsCompressed());
- if (*this != pubkeyRec)
- return false;
- return true;
- }
-
- bool CPubKey::IsFullyValid() const {
- if (!IsValid())
- return false;
- CECKey key;
- if (!key.SetPubKey(*this))
- return false;
- return true;
- }
-
- bool CPubKey::Decompress() {
- if (!IsValid())
- return false;
- CECKey key;
- if (!key.SetPubKey(*this))
- return false;
- key.GetPubKey(*this, false);
- return true;
- }
-
- void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]) {
- unsigned char num[4];
- num[0] = (nChild >> 24) & 0xFF;
- num[1] = (nChild >> 16) & 0xFF;
- num[2] = (nChild >> 8) & 0xFF;
- num[3] = (nChild >> 0) & 0xFF;
- HMAC_SHA512_CTX ctx;
- HMAC_SHA512_Init(&ctx, chainCode, 32);
- HMAC_SHA512_Update(&ctx, &header, 1);
- HMAC_SHA512_Update(&ctx, data, 32);
- HMAC_SHA512_Update(&ctx, num, 4);
- HMAC_SHA512_Final(output, &ctx);
- }
-
- bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
- assert(IsValid());
- assert(IsCompressed());
- unsigned char out[64];
- LockObject(out);
- if ((nChild >> 31) == 0) {
- CPubKey pubkey = GetPubKey();
- assert(pubkey.begin() + 33 == pubkey.end());
- BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
- } else {
- assert(begin() + 32 == end());
- BIP32Hash(cc, nChild, 0, begin(), out);
- }
- memcpy(ccChild, out+32, 32);
- bool ret = CECKey::TweakSecret((unsigned char*)keyChild.begin(), begin(), out);
- UnlockObject(out);
- keyChild.fCompressed = true;
- keyChild.fValid = ret;
- return ret;
- }
-
- bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const {
- assert(IsValid());
- assert((nChild >> 31) == 0);
- assert(begin() + 33 == end());
- unsigned char out[64];
- BIP32Hash(cc, nChild, *begin(), begin()+1, out);
- memcpy(ccChild, out+32, 32);
- CECKey key;
- bool ret = key.SetPubKey(*this);
- ret &= key.TweakPublic(out);
- key.GetPubKey(pubkeyChild, true);
- return ret;
- }
-
- bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const {
- out.nDepth = nDepth + 1;
- CKeyID id = key.GetPubKey().GetID();
- memcpy(&out.vchFingerprint[0], &id, 4);
- out.nChild = nChild;
- return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode);
- }
-
- void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) {
- static const char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
- HMAC_SHA512_CTX ctx;
- HMAC_SHA512_Init(&ctx, hashkey, sizeof(hashkey));
- HMAC_SHA512_Update(&ctx, seed, nSeedLen);
- unsigned char out[64];
- LockObject(out);
- HMAC_SHA512_Final(out, &ctx);
- key.Set(&out[0], &out[32], true);
- memcpy(vchChainCode, &out[32], 32);
- UnlockObject(out);
- nDepth = 0;
- nChild = 0;
- memset(vchFingerprint, 0, sizeof(vchFingerprint));
- }
-
- CExtPubKey CExtKey::Neuter() const {
- CExtPubKey ret;
- ret.nDepth = nDepth;
- memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
- ret.nChild = nChild;
- ret.pubkey = key.GetPubKey();
- memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
- return ret;
- }
-
- void CExtKey::Encode(unsigned char code[74]) const {
- code[0] = nDepth;
- memcpy(code+1, vchFingerprint, 4);
- code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
- code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
- memcpy(code+9, vchChainCode, 32);
- code[41] = 0;
- assert(key.size() == 32);
- memcpy(code+42, key.begin(), 32);
- }
-
- void CExtKey::Decode(const unsigned char code[74]) {
- nDepth = code[0];
- memcpy(vchFingerprint, code+1, 4);
- nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
- memcpy(vchChainCode, code+9, 32);
- key.Set(code+42, code+74, true);
- }
-
- void CExtPubKey::Encode(unsigned char code[74]) const {
- code[0] = nDepth;
- memcpy(code+1, vchFingerprint, 4);
- code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
- code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF;
- memcpy(code+9, vchChainCode, 32);
- assert(pubkey.size() == 33);
- memcpy(code+41, pubkey.begin(), 33);
- }
-
- void CExtPubKey::Decode(const unsigned char code[74]) {
- nDepth = code[0];
- memcpy(vchFingerprint, code+1, 4);
- nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
- memcpy(vchChainCode, code+9, 32);
- pubkey.Set(code+41, code+74);
- }
-
- bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const {
- out.nDepth = nDepth + 1;
- CKeyID id = pubkey.GetID();
- memcpy(&out.vchFingerprint[0], &id, 4);
- out.nChild = nChild;
- return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode);
- }
|