You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1586 lines
62 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2017 The Starwels developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <script/interpreter.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <pubkey.h>
#include <script/script.h>
#include <uint256.h>
typedef std::vector<unsigned char> valtype;
namespace {
inline bool set_success(ScriptError* ret)
{
if (ret)
*ret = SCRIPT_ERR_OK;
return true;
}
inline bool set_error(ScriptError* ret, const ScriptError serror)
{
if (ret)
*ret = serror;
return false;
}
} // namespace
bool CastToBool(const valtype& vch)
{
for (unsigned int i = 0; i < vch.size(); i++)
{
if (vch[i] != 0)
{
// Can be negative zero
if (i == vch.size()-1 && vch[i] == 0x80)
return false;
return true;
}
}
return false;
}
/**
* Script is a stack machine (like Forth) that evaluates a predicate
* returning a bool indicating valid or not. There are no loops.
*/
#define stacktop(i) (stack.at(stack.size()+(i)))
#define altstacktop(i) (altstack.at(altstack.size()+(i)))
static inline void popstack(std::vector<valtype>& stack)
{
if (stack.empty())
throw std::runtime_error("popstack(): stack empty");
stack.pop_back();
}
bool static IsCompressedOrUncompressedPubKey(const valtype &vchPubKey) {
if (vchPubKey.size() < 33) {
// Non-canonical public key: too short
return false;
}
if (vchPubKey[0] == 0x04) {
if (vchPubKey.size() != 65) {
// Non-canonical public key: invalid length for uncompressed key
return false;
}
} else if (vchPubKey[0] == 0x02 || vchPubKey[0] == 0x03) {
if (vchPubKey.size() != 33) {
// Non-canonical public key: invalid length for compressed key
return false;
}
} else {
// Non-canonical public key: neither compressed nor uncompressed
return false;
}
return true;
}
bool static IsCompressedPubKey(const valtype &vchPubKey) {
if (vchPubKey.size() != 33) {
// Non-canonical public key: invalid length for compressed key
return false;
}
if (vchPubKey[0] != 0x02 && vchPubKey[0] != 0x03) {
// Non-canonical public key: invalid prefix for compressed key
return false;
}
return true;
}
/**
* A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
* Where R and S are not negative (their first byte has its highest bit not set), and not
* excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
* in which case a single 0 byte is necessary and even required).
*
* See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
*
* This function is consensus-critical since BIP66.
*/
bool static IsValidSignatureEncoding(const std::vector<unsigned char> &sig) {
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
// * total-length: 1-byte length descriptor of everything that follows,
// excluding the sighash byte.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
// * sighash: 1-byte value indicating what data is hashed (not part of the DER
// signature)
// Minimum and maximum size constraints.
if (sig.size() < 9) return false;
if (sig.size() > 73) return false;
// A signature is of type 0x30 (compound).
if (sig[0] != 0x30) return false;
// Make sure the length covers the entire signature.
if (sig[1] != sig.size() - 3) return false;
// Extract the length of the R element.
unsigned int lenR = sig[3];
// Make sure the length of the S element is still inside the signature.
if (5 + lenR >= sig.size()) return false;
// Extract the length of the S element.
unsigned int lenS = sig[5 + lenR];
// Verify that the length of the signature matches the sum of the length
// of the elements.
if ((size_t)(lenR + lenS + 7) != sig.size()) return false;
// Check whether the R element is an integer.
if (sig[2] != 0x02) return false;
// Zero-length integers are not allowed for R.
if (lenR == 0) return false;
// Negative numbers are not allowed for R.
if (sig[4] & 0x80) return false;
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;
// Check whether the S element is an integer.
if (sig[lenR + 4] != 0x02) return false;
// Zero-length integers are not allowed for S.
if (lenS == 0) return false;
// Negative numbers are not allowed for S.
if (sig[lenR + 6] & 0x80) return false;
// Null bytes at the start of S are not allowed, unless S would otherwise be
// interpreted as a negative number.
if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;
return true;
}
bool static IsLowDERSignature(const valtype &vchSig, ScriptError* serror) {
if (!IsValidSignatureEncoding(vchSig)) {
return set_error(serror, SCRIPT_ERR_SIG_DER);
}
6 years ago
// https://bitcoin.stackexchange.com/a/12556:
// Also note that inside transaction signatures, an extra hashtype byte
// follows the actual signature data.
std::vector<unsigned char> vchSigCopy(vchSig.begin(), vchSig.begin() + vchSig.size() - 1);
6 years ago
// If the S value is above the order of the curve divided by two, its
// complement modulo the order could have been used instead, which is
// one byte shorter when encoded correctly.
if (!CPubKey::CheckLowS(vchSigCopy)) {
return set_error(serror, SCRIPT_ERR_SIG_HIGH_S);
}
return true;
}
bool static IsDefinedHashtypeSignature(const valtype &vchSig) {
if (vchSig.size() == 0) {
return false;
}
unsigned char nHashType = vchSig[vchSig.size() - 1] & (~(SIGHASH_ANYONECANPAY));
if (nHashType < SIGHASH_ALL || nHashType > SIGHASH_SINGLE)
return false;
return true;
}
bool CheckSignatureEncoding(const std::vector<unsigned char> &vchSig, unsigned int flags, ScriptError* serror) {
// Empty signature. Not strictly DER encoded, but allowed to provide a
// compact way to provide an invalid signature for use with CHECK(MULTI)SIG
if (vchSig.size() == 0) {
return true;
}
if ((flags & (SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_STRICTENC)) != 0 && !IsValidSignatureEncoding(vchSig)) {
return set_error(serror, SCRIPT_ERR_SIG_DER);
} else if ((flags & SCRIPT_VERIFY_LOW_S) != 0 && !IsLowDERSignature(vchSig, serror)) {
// serror is set
return false;
} else if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsDefinedHashtypeSignature(vchSig)) {
return set_error(serror, SCRIPT_ERR_SIG_HASHTYPE);
}
return true;
}
bool static CheckPubKeyEncoding(const valtype &vchPubKey, unsigned int flags, const SigVersion &sigversion, ScriptError* serror) {
if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsCompressedOrUncompressedPubKey(vchPubKey)) {
return set_error(serror, SCRIPT_ERR_PUBKEYTYPE);
}
// Only compressed keys are accepted in segwit
if ((flags & SCRIPT_VERIFY_WITNESS_PUBKEYTYPE) != 0 && sigversion == SIGVERSION_WITNESS_V0 && !IsCompressedPubKey(vchPubKey)) {
return set_error(serror, SCRIPT_ERR_WITNESS_PUBKEYTYPE);
}
return true;
}
bool static CheckMinimalPush(const valtype& data, opcodetype opcode) {
if (data.size() == 0) {
// Could have used OP_0.
return opcode == OP_0;
} else if (data.size() == 1 && data[0] >= 1 && data[0] <= 16) {
// Could have used OP_1 .. OP_16.
return opcode == OP_1 + (data[0] - 1);
} else if (data.size() == 1 && data[0] == 0x81) {
// Could have used OP_1NEGATE.
return opcode == OP_1NEGATE;
} else if (data.size() <= 75) {
// Could have used a direct push (opcode indicating number of bytes pushed + those bytes).
return opcode == data.size();
} else if (data.size() <= 255) {
// Could have used OP_PUSHDATA.
return opcode == OP_PUSHDATA1;
} else if (data.size() <= 65535) {
// Could have used OP_PUSHDATA2.
return opcode == OP_PUSHDATA2;
}
return true;
}
bool EvalScript(std::vector<std::vector<unsigned char> >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, SigVersion sigversion, ScriptError* serror)
{
static const CScriptNum bnZero(0);
static const CScriptNum bnOne(1);
// static const CScriptNum bnFalse(0);
// static const CScriptNum bnTrue(1);
static const valtype vchFalse(0);
// static const valtype vchZero(0);
static const valtype vchTrue(1, 1);
CScript::const_iterator pc = script.begin();
CScript::const_iterator pend = script.end();
CScript::const_iterator pbegincodehash = script.begin();
opcodetype opcode;
valtype vchPushValue;
std::vector<bool> vfExec;
std::vector<valtype> altstack;
set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR);
if (script.size() > MAX_SCRIPT_SIZE)
return set_error(serror, SCRIPT_ERR_SCRIPT_SIZE);
int nOpCount = 0;
bool fRequireMinimal = (flags & SCRIPT_VERIFY_MINIMALDATA) != 0;
try
{
while (pc < pend)
{
bool fExec = !count(vfExec.begin(), vfExec.end(), false);
//
// Read instruction
//
if (!script.GetOp(pc, opcode, vchPushValue))
return set_error(serror, SCRIPT_ERR_BAD_OPCODE);
if (vchPushValue.size() > MAX_SCRIPT_ELEMENT_SIZE)
return set_error(serror, SCRIPT_ERR_PUSH_SIZE);
// Note how OP_RESERVED does not count towards the opcode limit.
if (opcode > OP_16 && ++nOpCount > MAX_OPS_PER_SCRIPT)
return set_error(serror, SCRIPT_ERR_OP_COUNT);
if (opcode == OP_CAT ||
opcode == OP_SUBSTR ||
opcode == OP_LEFT ||
opcode == OP_RIGHT ||
opcode == OP_INVERT ||
opcode == OP_AND ||
opcode == OP_OR ||
opcode == OP_XOR ||
opcode == OP_2MUL ||
opcode == OP_2DIV ||
opcode == OP_MUL ||
opcode == OP_DIV ||
opcode == OP_MOD ||
opcode == OP_LSHIFT ||
opcode == OP_RSHIFT)
return set_error(serror, SCRIPT_ERR_DISABLED_OPCODE); // Disabled opcodes.
// With SCRIPT_VERIFY_CONST_SCRIPTCODE, OP_CODESEPARATOR in non-segwit script is rejected even in an unexecuted branch
if (opcode == OP_CODESEPARATOR && sigversion == SIGVERSION_BASE && (flags & SCRIPT_VERIFY_CONST_SCRIPTCODE))
return set_error(serror, SCRIPT_ERR_OP_CODESEPARATOR);
if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) {
if (fRequireMinimal && !CheckMinimalPush(vchPushValue, opcode)) {
return set_error(serror, SCRIPT_ERR_MINIMALDATA);
}
stack.push_back(vchPushValue);
} else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF))
switch (opcode)
{
//
// Push value
//
case OP_1NEGATE:
case OP_1:
case OP_2:
case OP_3:
case OP_4:
case OP_5:
case OP_6:
case OP_7:
case OP_8:
case OP_9:
case OP_10:
case OP_11:
case OP_12:
case OP_13:
case OP_14:
case OP_15:
case OP_16:
{
// ( -- value)
CScriptNum bn((int)opcode - (int)(OP_1 - 1));
stack.push_back(bn.getvch());
// The result of these opcodes should always be the minimal way to push the data
// they push, so no need for a CheckMinimalPush here.
}
break;
//
// Control
//
case OP_NOP:
break;
case OP_CHECKLOCKTIMEVERIFY:
{
if (!(flags & SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY)) {
// not enabled; treat as a NOP2
break;
}
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
// Note that elsewhere numeric opcodes are limited to
// operands in the range -2**31+1 to 2**31-1, however it is
// legal for opcodes to produce results exceeding that
// range. This limitation is implemented by CScriptNum's
// default 4-byte limit.
//
// If we kept to that limit we'd have a year 2038 problem,
// even though the nLockTime field in transactions
// themselves is uint32 which only becomes meaningless
// after the year 2106.
//
// Thus as a special case we tell CScriptNum to accept up
// to 5-byte bignums, which are good until 2**39-1, well
// beyond the 2**32-1 limit of the nLockTime field itself.
const CScriptNum nLockTime(stacktop(-1), fRequireMinimal, 5);
// In the rare event that the argument may be < 0 due to
// some arithmetic being done first, you can always use
// 0 MAX CHECKLOCKTIMEVERIFY.
if (nLockTime < 0)
return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);
// Actually compare the specified lock time with the transaction.
if (!checker.CheckLockTime(nLockTime))
return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);
break;
}
case OP_CHECKSEQUENCEVERIFY:
{
if (!(flags & SCRIPT_VERIFY_CHECKSEQUENCEVERIFY)) {
// not enabled; treat as a NOP3
break;
}
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
// nSequence, like nLockTime, is a 32-bit unsigned integer
// field. See the comment in CHECKLOCKTIMEVERIFY regarding
// 5-byte numeric operands.
const CScriptNum nSequence(stacktop(-1), fRequireMinimal, 5);
// In the rare event that the argument may be < 0 due to
// some arithmetic being done first, you can always use
// 0 MAX CHECKSEQUENCEVERIFY.
if (nSequence < 0)
return set_error(serror, SCRIPT_ERR_NEGATIVE_LOCKTIME);
// To provide for future soft-fork extensibility, if the
// operand has the disabled lock-time flag set,
// CHECKSEQUENCEVERIFY behaves as a NOP.
if ((nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) != 0)
break;
// Compare the specified sequence number with the input.
if (!checker.CheckSequence(nSequence))
return set_error(serror, SCRIPT_ERR_UNSATISFIED_LOCKTIME);
break;
}
case OP_NOP1: case OP_NOP4: case OP_NOP5:
case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10:
{
if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS)
return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS);
}
break;
case OP_IF:
case OP_NOTIF:
{
// <expression> if [statements] [else [statements]] endif
bool fValue = false;
if (fExec)
{
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
valtype& vch = stacktop(-1);
if (sigversion == SIGVERSION_WITNESS_V0 && (flags & SCRIPT_VERIFY_MINIMALIF)) {
if (vch.size() > 1)
return set_error(serror, SCRIPT_ERR_MINIMALIF);
if (vch.size() == 1 && vch[0] != 1)
return set_error(serror, SCRIPT_ERR_MINIMALIF);
}
fValue = CastToBool(vch);
if (opcode == OP_NOTIF)
fValue = !fValue;
popstack(stack);
}
vfExec.push_back(fValue);
}
break;
case OP_ELSE:
{
if (vfExec.empty())
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
vfExec.back() = !vfExec.back();
}
break;
case OP_ENDIF:
{
if (vfExec.empty())
return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
vfExec.pop_back();
}
break;
case OP_VERIFY:
{
// (true -- ) or
// (false -- false) and return
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
bool fValue = CastToBool(stacktop(-1));
if (fValue)
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_VERIFY);
}
break;
case OP_RETURN:
{
return set_error(serror, SCRIPT_ERR_OP_RETURN);
}
break;
//
// Stack ops
//
case OP_TOALTSTACK:
{
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
altstack.push_back(stacktop(-1));
popstack(stack);
}
break;
case OP_FROMALTSTACK:
{
if (altstack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_ALTSTACK_OPERATION);
stack.push_back(altstacktop(-1));
popstack(altstack);
}
break;
case OP_2DROP:
{
// (x1 x2 -- )
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
popstack(stack);
popstack(stack);
}
break;
case OP_2DUP:
{
// (x1 x2 -- x1 x2 x1 x2)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-2);
valtype vch2 = stacktop(-1);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_3DUP:
{
// (x1 x2 x3 -- x1 x2 x3 x1 x2 x3)
if (stack.size() < 3)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-3);
valtype vch2 = stacktop(-2);
valtype vch3 = stacktop(-1);
stack.push_back(vch1);
stack.push_back(vch2);
stack.push_back(vch3);
}
break;
case OP_2OVER:
{
// (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
if (stack.size() < 4)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-4);
valtype vch2 = stacktop(-3);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_2ROT:
{
// (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)
if (stack.size() < 6)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch1 = stacktop(-6);
valtype vch2 = stacktop(-5);
stack.erase(stack.end()-6, stack.end()-4);
stack.push_back(vch1);
stack.push_back(vch2);
}
break;
case OP_2SWAP:
{
// (x1 x2 x3 x4 -- x3 x4 x1 x2)
if (stack.size() < 4)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
swap(stacktop(-4), stacktop(-2));
swap(stacktop(-3), stacktop(-1));
}
break;
case OP_IFDUP:
{
// (x - 0 | x x)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-1);
if (CastToBool(vch))
stack.push_back(vch);
}
break;
case OP_DEPTH:
{
// -- stacksize
CScriptNum bn(stack.size());
stack.push_back(bn.getvch());
}
break;
case OP_DROP:
{
// (x -- )
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
popstack(stack);
}
break;
case OP_DUP:
{
// (x -- x x)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-1);
stack.push_back(vch);
}
break;
case OP_NIP:
{
// (x1 x2 -- x2)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
stack.erase(stack.end() - 2);
}
break;
case OP_OVER:
{
// (x1 x2 -- x1 x2 x1)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-2);
stack.push_back(vch);
}
break;
case OP_PICK:
case OP_ROLL:
{
// (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn)
// (xn ... x2 x1 x0 n - ... x2 x1 x0 xn)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
int n = CScriptNum(stacktop(-1), fRequireMinimal).getint();
popstack(stack);
if (n < 0 || n >= (int)stack.size())
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-n-1);
if (opcode == OP_ROLL)
stack.erase(stack.end()-n-1);
stack.push_back(vch);
}
break;
case OP_ROT:
{
// (x1 x2 x3 -- x2 x3 x1)
// x2 x1 x3 after first swap
// x2 x3 x1 after second swap
if (stack.size() < 3)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
swap(stacktop(-3), stacktop(-2));
swap(stacktop(-2), stacktop(-1));
}
break;
case OP_SWAP:
{
// (x1 x2 -- x2 x1)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
swap(stacktop(-2), stacktop(-1));
}
break;
case OP_TUCK:
{
// (x1 x2 -- x2 x1 x2)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype vch = stacktop(-1);
stack.insert(stack.end()-2, vch);
}
break;
case OP_SIZE:
{
// (in -- in size)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn(stacktop(-1).size());
stack.push_back(bn.getvch());
}
break;
//
// Bitwise logic
//
case OP_EQUAL:
case OP_EQUALVERIFY:
//case OP_NOTEQUAL: // use OP_NUMNOTEQUAL
{
// (x1 x2 - bool)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype& vch1 = stacktop(-2);
valtype& vch2 = stacktop(-1);
bool fEqual = (vch1 == vch2);
// OP_NOTEQUAL is disabled because it would be too easy to say
// something like n != 1 and have some wiseguy pass in 1 with extra
// zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001)
//if (opcode == OP_NOTEQUAL)
// fEqual = !fEqual;
popstack(stack);
popstack(stack);
stack.push_back(fEqual ? vchTrue : vchFalse);
if (opcode == OP_EQUALVERIFY)
{
if (fEqual)
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_EQUALVERIFY);
}
}
break;
//
// Numeric
//
case OP_1ADD:
case OP_1SUB:
case OP_NEGATE:
case OP_ABS:
case OP_NOT:
case OP_0NOTEQUAL:
{
// (in -- out)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn(stacktop(-1), fRequireMinimal);
switch (opcode)
{
case OP_1ADD: bn += bnOne; break;
case OP_1SUB: bn -= bnOne; break;
case OP_NEGATE: bn = -bn; break;
case OP_ABS: if (bn < bnZero) bn = -bn; break;
case OP_NOT: bn = (bn == bnZero); break;
case OP_0NOTEQUAL: bn = (bn != bnZero); break;
default: assert(!"invalid opcode"); break;
}
popstack(stack);
stack.push_back(bn.getvch());
}
break;
case OP_ADD:
case OP_SUB:
case OP_BOOLAND:
case OP_BOOLOR:
case OP_NUMEQUAL:
case OP_NUMEQUALVERIFY:
case OP_NUMNOTEQUAL:
case OP_LESSTHAN:
case OP_GREATERTHAN:
case OP_LESSTHANOREQUAL:
case OP_GREATERTHANOREQUAL:
case OP_MIN:
case OP_MAX:
{
// (x1 x2 -- out)
if (stack.size() < 2)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn1(stacktop(-2), fRequireMinimal);
CScriptNum bn2(stacktop(-1), fRequireMinimal);
CScriptNum bn(0);
switch (opcode)
{
case OP_ADD:
bn = bn1 + bn2;
break;
case OP_SUB:
bn = bn1 - bn2;
break;
case OP_BOOLAND: bn = (bn1 != bnZero && bn2 != bnZero); break;
case OP_BOOLOR: bn = (bn1 != bnZero || bn2 != bnZero); break;
case OP_NUMEQUAL: bn = (bn1 == bn2); break;
case OP_NUMEQUALVERIFY: bn = (bn1 == bn2); break;
case OP_NUMNOTEQUAL: bn = (bn1 != bn2); break;
case OP_LESSTHAN: bn = (bn1 < bn2); break;
case OP_GREATERTHAN: bn = (bn1 > bn2); break;
case OP_LESSTHANOREQUAL: bn = (bn1 <= bn2); break;
case OP_GREATERTHANOREQUAL: bn = (bn1 >= bn2); break;
case OP_MIN: bn = (bn1 < bn2 ? bn1 : bn2); break;
case OP_MAX: bn = (bn1 > bn2 ? bn1 : bn2); break;
default: assert(!"invalid opcode"); break;
}
popstack(stack);
popstack(stack);
stack.push_back(bn.getvch());
if (opcode == OP_NUMEQUALVERIFY)
{
if (CastToBool(stacktop(-1)))
popstack(stack);
else
return set_error(serror, SCRIPT_ERR_NUMEQUALVERIFY);
}
}
break;
case OP_WITHIN:
{
// (x min max -- out)
if (stack.size() < 3)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
CScriptNum bn1(stacktop(-3), fRequireMinimal);
CScriptNum bn2(stacktop(-2), fRequireMinimal);
CScriptNum bn3(stacktop(-1), fRequireMinimal);
bool fValue = (bn2 <= bn1 && bn1 < bn3);
popstack(stack);
popstack(stack);
popstack(stack);
stack.push_back(fValue ? vchTrue : vchFalse);
}
break;
//
// Crypto
//
case OP_RIPEMD160:
case OP_SHA1:
case OP_SHA256:
case OP_HASH160:
case OP_HASH256:
{
// (in -- hash)
if (stack.size() < 1)
return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION);
valtype& vch = stacktop(-1);
valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32);
if (opcode == OP_RIPEMD160)
CRIPEMD160().Write(vch.data(), vch.size()).Finalize(vchHash.data());
else if (opcode == OP_SHA1)
CSHA1().Write(vch.data(), vch.size()).Finalize(vchHash.data());
else if (opcode == OP_SHA256)
CSHA256().Write(vch.data(), vch.size()).Finalize(vchHash.data());
else if (opcode == OP_HASH160)
CHash160().Write(vch.data(), vch.size()).Finalize(vchHash.data());
else if (opcode == OP_HASH256)
CHash256().Write(vch.data(), vch.size()).Finalize(vchHash.data());
popstack(stack);
stack.push_back(vchHash);
}
break;