You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

120 lines
5.1 KiB

/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_GROUP_
#define _SECP256K1_GROUP_
#include "num.h"
#include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
typedef struct {
secp256k1_fe_t x;
secp256k1_fe_t y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge_t;
/** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct {
secp256k1_fe_t x; /* actual X: x/z^2 */
secp256k1_fe_t y; /* actual Y: y/z^3 */
secp256k1_fe_t z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej_t;
/** Global constants related to the group */
typedef struct {
secp256k1_ge_t g; /* the generator point */
#ifdef USE_ENDOMORPHISM
/* constants related to secp256k1's efficiently computable endomorphism */
secp256k1_fe_t beta;
#endif
} secp256k1_ge_consts_t;
static const secp256k1_ge_consts_t *secp256k1_ge_consts = NULL;
/** Initialize the group module. */
static void secp256k1_ge_start(void);
/** De-initialize the group module. */
static void secp256k1_ge_stop(void);
/** Set a group element equal to the point at infinity */
static void secp256k1_ge_set_infinity(secp256k1_ge_t *r);
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid(const secp256k1_ge_t *a);
static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */
static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a);
/** Set a group element equal to another which is given in jacobian coordinates */
static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej_t *r);
/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
/** Get the X coordinate of a group element (jacobian). */
static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
/** Set r equal to the double of a. */
static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Set r equal to the sum of a and b. */
static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. */
static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */
static void secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a);
#ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);
#endif
/** Clear a secp256k1_gej_t to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej_t *r);
/** Clear a secp256k1_ge_t to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge_t *r);
#endif