mirror of https://github.com/starwels/secp256k1
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1027 lines
37 KiB
1027 lines
37 KiB
/***************************************************************************** |
|
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick * |
|
* Distributed under the MIT software license, see the accompanying * |
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php. * |
|
*****************************************************************************/ |
|
|
|
#ifndef SECP256K1_ECMULT_IMPL_H |
|
#define SECP256K1_ECMULT_IMPL_H |
|
|
|
#include <string.h> |
|
#include <stdint.h> |
|
|
|
#include "group.h" |
|
#include "scalar.h" |
|
#include "ecmult.h" |
|
|
|
#if defined(EXHAUSTIVE_TEST_ORDER) |
|
/* We need to lower these values for exhaustive tests because |
|
* the tables cannot have infinities in them (this breaks the |
|
* affine-isomorphism stuff which tracks z-ratios) */ |
|
# if EXHAUSTIVE_TEST_ORDER > 128 |
|
# define WINDOW_A 5 |
|
# define WINDOW_G 8 |
|
# elif EXHAUSTIVE_TEST_ORDER > 8 |
|
# define WINDOW_A 4 |
|
# define WINDOW_G 4 |
|
# else |
|
# define WINDOW_A 2 |
|
# define WINDOW_G 2 |
|
# endif |
|
#else |
|
/* optimal for 128-bit and 256-bit exponents. */ |
|
#define WINDOW_A 5 |
|
/** larger numbers may result in slightly better performance, at the cost of |
|
exponentially larger precomputed tables. */ |
|
#ifdef USE_ENDOMORPHISM |
|
/** Two tables for window size 15: 1.375 MiB. */ |
|
#define WINDOW_G 15 |
|
#else |
|
/** One table for window size 16: 1.375 MiB. */ |
|
#define WINDOW_G 16 |
|
#endif |
|
#endif |
|
|
|
#ifdef USE_ENDOMORPHISM |
|
#define WNAF_BITS 128 |
|
#else |
|
#define WNAF_BITS 256 |
|
#endif |
|
#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w)) |
|
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w) |
|
|
|
/** The number of entries a table with precomputed multiples needs to have. */ |
|
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) |
|
|
|
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */ |
|
#define PIPPENGER_SCRATCH_OBJECTS 6 |
|
#define STRAUSS_SCRATCH_OBJECTS 6 |
|
|
|
#define PIPPENGER_MAX_BUCKET_WINDOW 12 |
|
|
|
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */ |
|
#ifdef USE_ENDOMORPHISM |
|
#define ECMULT_PIPPENGER_THRESHOLD 88 |
|
#else |
|
#define ECMULT_PIPPENGER_THRESHOLD 160 |
|
#endif |
|
|
|
#ifdef USE_ENDOMORPHISM |
|
#define ECMULT_MAX_POINTS_PER_BATCH 5000000 |
|
#else |
|
#define ECMULT_MAX_POINTS_PER_BATCH 10000000 |
|
#endif |
|
|
|
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain |
|
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will |
|
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z. |
|
* Prej's Z values are undefined, except for the last value. |
|
*/ |
|
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) { |
|
secp256k1_gej d; |
|
secp256k1_ge a_ge, d_ge; |
|
int i; |
|
|
|
VERIFY_CHECK(!a->infinity); |
|
|
|
secp256k1_gej_double_var(&d, a, NULL); |
|
|
|
/* |
|
* Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate |
|
* of 'd', and scale the 1P starting value's x/y coordinates without changing its z. |
|
*/ |
|
d_ge.x = d.x; |
|
d_ge.y = d.y; |
|
d_ge.infinity = 0; |
|
|
|
secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z); |
|
prej[0].x = a_ge.x; |
|
prej[0].y = a_ge.y; |
|
prej[0].z = a->z; |
|
prej[0].infinity = 0; |
|
|
|
zr[0] = d.z; |
|
for (i = 1; i < n; i++) { |
|
secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]); |
|
} |
|
|
|
/* |
|
* Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only |
|
* the final point's z coordinate is actually used though, so just update that. |
|
*/ |
|
secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z); |
|
} |
|
|
|
/** Fill a table 'pre' with precomputed odd multiples of a. |
|
* |
|
* There are two versions of this function: |
|
* - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its |
|
* resulting point set to a single constant Z denominator, stores the X and Y |
|
* coordinates as ge_storage points in pre, and stores the global Z in rz. |
|
* It only operates on tables sized for WINDOW_A wnaf multiples. |
|
* - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its |
|
* resulting point set to actually affine points, and stores those in pre. |
|
* It operates on tables of any size, but uses heap-allocated temporaries. |
|
* |
|
* To compute a*P + b*G, we compute a table for P using the first function, |
|
* and for G using the second (which requires an inverse, but it only needs to |
|
* happen once). |
|
*/ |
|
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) { |
|
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; |
|
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; |
|
|
|
/* Compute the odd multiples in Jacobian form. */ |
|
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a); |
|
/* Bring them to the same Z denominator. */ |
|
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); |
|
} |
|
|
|
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) { |
|
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n); |
|
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n); |
|
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n); |
|
int i; |
|
|
|
/* Compute the odd multiples in Jacobian form. */ |
|
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a); |
|
/* Convert them in batch to affine coordinates. */ |
|
secp256k1_ge_set_table_gej_var(prea, prej, zr, n); |
|
/* Convert them to compact storage form. */ |
|
for (i = 0; i < n; i++) { |
|
secp256k1_ge_to_storage(&pre[i], &prea[i]); |
|
} |
|
|
|
free(prea); |
|
free(prej); |
|
free(zr); |
|
} |
|
|
|
/** The following two macro retrieves a particular odd multiple from a table |
|
* of precomputed multiples. */ |
|
#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \ |
|
VERIFY_CHECK(((n) & 1) == 1); \ |
|
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ |
|
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ |
|
if ((n) > 0) { \ |
|
*(r) = (pre)[((n)-1)/2]; \ |
|
} else { \ |
|
secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \ |
|
} \ |
|
} while(0) |
|
|
|
#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ |
|
VERIFY_CHECK(((n) & 1) == 1); \ |
|
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ |
|
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ |
|
if ((n) > 0) { \ |
|
secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ |
|
} else { \ |
|
secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ |
|
secp256k1_ge_neg((r), (r)); \ |
|
} \ |
|
} while(0) |
|
|
|
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) { |
|
ctx->pre_g = NULL; |
|
#ifdef USE_ENDOMORPHISM |
|
ctx->pre_g_128 = NULL; |
|
#endif |
|
} |
|
|
|
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) { |
|
secp256k1_gej gj; |
|
|
|
if (ctx->pre_g != NULL) { |
|
return; |
|
} |
|
|
|
/* get the generator */ |
|
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); |
|
|
|
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); |
|
|
|
/* precompute the tables with odd multiples */ |
|
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb); |
|
|
|
#ifdef USE_ENDOMORPHISM |
|
{ |
|
secp256k1_gej g_128j; |
|
int i; |
|
|
|
ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); |
|
|
|
/* calculate 2^128*generator */ |
|
g_128j = gj; |
|
for (i = 0; i < 128; i++) { |
|
secp256k1_gej_double_var(&g_128j, &g_128j, NULL); |
|
} |
|
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb); |
|
} |
|
#endif |
|
} |
|
|
|
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, |
|
const secp256k1_ecmult_context *src, const secp256k1_callback *cb) { |
|
if (src->pre_g == NULL) { |
|
dst->pre_g = NULL; |
|
} else { |
|
size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); |
|
dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); |
|
memcpy(dst->pre_g, src->pre_g, size); |
|
} |
|
#ifdef USE_ENDOMORPHISM |
|
if (src->pre_g_128 == NULL) { |
|
dst->pre_g_128 = NULL; |
|
} else { |
|
size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); |
|
dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); |
|
memcpy(dst->pre_g_128, src->pre_g_128, size); |
|
} |
|
#endif |
|
} |
|
|
|
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) { |
|
return ctx->pre_g != NULL; |
|
} |
|
|
|
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) { |
|
free(ctx->pre_g); |
|
#ifdef USE_ENDOMORPHISM |
|
free(ctx->pre_g_128); |
|
#endif |
|
secp256k1_ecmult_context_init(ctx); |
|
} |
|
|
|
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), |
|
* with the following guarantees: |
|
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) |
|
* - two non-zero entries in wnaf are separated by at least w-1 zeroes. |
|
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more |
|
* than the number of bits in the (absolute value) of the input. |
|
*/ |
|
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) { |
|
secp256k1_scalar s = *a; |
|
int last_set_bit = -1; |
|
int bit = 0; |
|
int sign = 1; |
|
int carry = 0; |
|
|
|
VERIFY_CHECK(wnaf != NULL); |
|
VERIFY_CHECK(0 <= len && len <= 256); |
|
VERIFY_CHECK(a != NULL); |
|
VERIFY_CHECK(2 <= w && w <= 31); |
|
|
|
memset(wnaf, 0, len * sizeof(wnaf[0])); |
|
|
|
if (secp256k1_scalar_get_bits(&s, 255, 1)) { |
|
secp256k1_scalar_negate(&s, &s); |
|
sign = -1; |
|
} |
|
|
|
while (bit < len) { |
|
int now; |
|
int word; |
|
if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) { |
|
bit++; |
|
continue; |
|
} |
|
|
|
now = w; |
|
if (now > len - bit) { |
|
now = len - bit; |
|
} |
|
|
|
word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry; |
|
|
|
carry = (word >> (w-1)) & 1; |
|
word -= carry << w; |
|
|
|
wnaf[bit] = sign * word; |
|
last_set_bit = bit; |
|
|
|
bit += now; |
|
} |
|
#ifdef VERIFY |
|
CHECK(carry == 0); |
|
while (bit < 256) { |
|
CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0); |
|
} |
|
#endif |
|
return last_set_bit + 1; |
|
} |
|
|
|
struct secp256k1_strauss_point_state { |
|
#ifdef USE_ENDOMORPHISM |
|
secp256k1_scalar na_1, na_lam; |
|
int wnaf_na_1[130]; |
|
int wnaf_na_lam[130]; |
|
int bits_na_1; |
|
int bits_na_lam; |
|
#else |
|
int wnaf_na[256]; |
|
int bits_na; |
|
#endif |
|
size_t input_pos; |
|
}; |
|
|
|
struct secp256k1_strauss_state { |
|
secp256k1_gej* prej; |
|
secp256k1_fe* zr; |
|
secp256k1_ge* pre_a; |
|
#ifdef USE_ENDOMORPHISM |
|
secp256k1_ge* pre_a_lam; |
|
#endif |
|
struct secp256k1_strauss_point_state* ps; |
|
}; |
|
|
|
static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { |
|
secp256k1_ge tmpa; |
|
secp256k1_fe Z; |
|
#ifdef USE_ENDOMORPHISM |
|
/* Splitted G factors. */ |
|
secp256k1_scalar ng_1, ng_128; |
|
int wnaf_ng_1[129]; |
|
int bits_ng_1 = 0; |
|
int wnaf_ng_128[129]; |
|
int bits_ng_128 = 0; |
|
#else |
|
int wnaf_ng[256]; |
|
int bits_ng = 0; |
|
#endif |
|
int i; |
|
int bits = 0; |
|
int np; |
|
int no = 0; |
|
|
|
for (np = 0; np < num; ++np) { |
|
if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) { |
|
continue; |
|
} |
|
state->ps[no].input_pos = np; |
|
#ifdef USE_ENDOMORPHISM |
|
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ |
|
secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]); |
|
|
|
/* build wnaf representation for na_1 and na_lam. */ |
|
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A); |
|
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A); |
|
VERIFY_CHECK(state->ps[no].bits_na_1 <= 130); |
|
VERIFY_CHECK(state->ps[no].bits_na_lam <= 130); |
|
if (state->ps[no].bits_na_1 > bits) { |
|
bits = state->ps[no].bits_na_1; |
|
} |
|
if (state->ps[no].bits_na_lam > bits) { |
|
bits = state->ps[no].bits_na_lam; |
|
} |
|
#else |
|
/* build wnaf representation for na. */ |
|
state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A); |
|
if (state->ps[no].bits_na > bits) { |
|
bits = state->ps[no].bits_na; |
|
} |
|
#endif |
|
++no; |
|
} |
|
|
|
/* Calculate odd multiples of a. |
|
* All multiples are brought to the same Z 'denominator', which is stored |
|
* in Z. Due to secp256k1' isomorphism we can do all operations pretending |
|
* that the Z coordinate was 1, use affine addition formulae, and correct |
|
* the Z coordinate of the result once at the end. |
|
* The exception is the precomputed G table points, which are actually |
|
* affine. Compared to the base used for other points, they have a Z ratio |
|
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same |
|
* isomorphism to efficiently add with a known Z inverse. |
|
*/ |
|
if (no > 0) { |
|
/* Compute the odd multiples in Jacobian form. */ |
|
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]); |
|
for (np = 1; np < no; ++np) { |
|
secp256k1_gej tmp = a[state->ps[np].input_pos]; |
|
#ifdef VERIFY |
|
secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); |
|
#endif |
|
secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z)); |
|
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp); |
|
secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z)); |
|
} |
|
/* Bring them to the same Z denominator. */ |
|
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr); |
|
} else { |
|
secp256k1_fe_set_int(&Z, 1); |
|
} |
|
|
|
#ifdef USE_ENDOMORPHISM |
|
for (np = 0; np < no; ++np) { |
|
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { |
|
secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]); |
|
} |
|
} |
|
|
|
if (ng) { |
|
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ |
|
secp256k1_scalar_split_128(&ng_1, &ng_128, ng); |
|
|
|
/* Build wnaf representation for ng_1 and ng_128 */ |
|
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G); |
|
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G); |
|
if (bits_ng_1 > bits) { |
|
bits = bits_ng_1; |
|
} |
|
if (bits_ng_128 > bits) { |
|
bits = bits_ng_128; |
|
} |
|
} |
|
#else |
|
if (ng) { |
|
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); |
|
if (bits_ng > bits) { |
|
bits = bits_ng; |
|
} |
|
} |
|
#endif |
|
|
|
secp256k1_gej_set_infinity(r); |
|
|
|
for (i = bits - 1; i >= 0; i--) { |
|
int n; |
|
secp256k1_gej_double_var(r, r, NULL); |
|
#ifdef USE_ENDOMORPHISM |
|
for (np = 0; np < no; ++np) { |
|
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) { |
|
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); |
|
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); |
|
} |
|
if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) { |
|
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); |
|
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); |
|
} |
|
} |
|
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { |
|
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); |
|
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); |
|
} |
|
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { |
|
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G); |
|
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); |
|
} |
|
#else |
|
for (np = 0; np < no; ++np) { |
|
if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) { |
|
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); |
|
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); |
|
} |
|
} |
|
if (i < bits_ng && (n = wnaf_ng[i])) { |
|
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); |
|
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); |
|
} |
|
#endif |
|
} |
|
|
|
if (!r->infinity) { |
|
secp256k1_fe_mul(&r->z, &r->z, &Z); |
|
} |
|
} |
|
|
|
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { |
|
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; |
|
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; |
|
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; |
|
struct secp256k1_strauss_point_state ps[1]; |
|
#ifdef USE_ENDOMORPHISM |
|
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; |
|
#endif |
|
struct secp256k1_strauss_state state; |
|
|
|
state.prej = prej; |
|
state.zr = zr; |
|
state.pre_a = pre_a; |
|
#ifdef USE_ENDOMORPHISM |
|
state.pre_a_lam = pre_a_lam; |
|
#endif |
|
state.ps = ps; |
|
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng); |
|
} |
|
|
|
static size_t secp256k1_strauss_scratch_size(size_t n_points) { |
|
#ifdef USE_ENDOMORPHISM |
|
static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); |
|
#else |
|
static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); |
|
#endif |
|
return n_points*point_size; |
|
} |
|
|
|
static int secp256k1_ecmult_strauss_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { |
|
secp256k1_gej* points; |
|
secp256k1_scalar* scalars; |
|
struct secp256k1_strauss_state state; |
|
size_t i; |
|
|
|
secp256k1_gej_set_infinity(r); |
|
if (inp_g_sc == NULL && n_points == 0) { |
|
return 1; |
|
} |
|
|
|
if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_strauss_scratch_size(n_points), STRAUSS_SCRATCH_OBJECTS)) { |
|
return 0; |
|
} |
|
points = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_gej)); |
|
scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_scalar)); |
|
state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej)); |
|
state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); |
|
#ifdef USE_ENDOMORPHISM |
|
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); |
|
state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A); |
|
#else |
|
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); |
|
#endif |
|
state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); |
|
|
|
for (i = 0; i < n_points; i++) { |
|
secp256k1_ge point; |
|
if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) { |
|
secp256k1_scratch_deallocate_frame(scratch); |
|
return 0; |
|
} |
|
secp256k1_gej_set_ge(&points[i], &point); |
|
} |
|
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc); |
|
secp256k1_scratch_deallocate_frame(scratch); |
|
return 1; |
|
} |
|
|
|
/* Wrapper for secp256k1_ecmult_multi_func interface */ |
|
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { |
|
return secp256k1_ecmult_strauss_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); |
|
} |
|
|
|
static size_t secp256k1_strauss_max_points(secp256k1_scratch *scratch) { |
|
return secp256k1_scratch_max_allocation(scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1); |
|
} |
|
|
|
/** Convert a number to WNAF notation. |
|
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. |
|
* It has the following guarantees: |
|
* - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w) |
|
* - the number of words set is always WNAF_SIZE(w) |
|
* - the returned skew is 0 or 1 |
|
*/ |
|
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) { |
|
int skew = 0; |
|
int pos; |
|
int max_pos; |
|
int last_w; |
|
const secp256k1_scalar *work = s; |
|
|
|
if (secp256k1_scalar_is_zero(s)) { |
|
for (pos = 0; pos < WNAF_SIZE(w); pos++) { |
|
wnaf[pos] = 0; |
|
} |
|
return 0; |
|
} |
|
|
|
if (secp256k1_scalar_is_even(s)) { |
|
skew = 1; |
|
} |
|
|
|
wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew; |
|
/* Compute last window size. Relevant when window size doesn't divide the |
|
* number of bits in the scalar */ |
|
last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w; |
|
|
|
/* Store the position of the first nonzero word in max_pos to allow |
|
* skipping leading zeros when calculating the wnaf. */ |
|
for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) { |
|
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); |
|
if(val != 0) { |
|
break; |
|
} |
|
wnaf[pos] = 0; |
|
} |
|
max_pos = pos; |
|
pos = 1; |
|
|
|
while (pos <= max_pos) { |
|
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w); |
|
if ((val & 1) == 0) { |
|
wnaf[pos - 1] -= (1 << w); |
|
wnaf[pos] = (val + 1); |
|
} else { |
|
wnaf[pos] = val; |
|
} |
|
/* Set a coefficient to zero if it is 1 or -1 and the proceeding digit |
|
* is strictly negative or strictly positive respectively. Only change |
|
* coefficients at previous positions because above code assumes that |
|
* wnaf[pos - 1] is odd. |
|
*/ |
|
if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) { |
|
if (wnaf[pos - 1] == 1) { |
|
wnaf[pos - 2] += 1 << w; |
|
} else { |
|
wnaf[pos - 2] -= 1 << w; |
|
} |
|
wnaf[pos - 1] = 0; |
|
} |
|
++pos; |
|
} |
|
|
|
return skew; |
|
} |
|
|
|
struct secp256k1_pippenger_point_state { |
|
int skew_na; |
|
size_t input_pos; |
|
}; |
|
|
|
struct secp256k1_pippenger_state { |
|
int *wnaf_na; |
|
struct secp256k1_pippenger_point_state* ps; |
|
}; |
|
|
|
/* |
|
* pippenger_wnaf computes the result of a multi-point multiplication as |
|
* follows: The scalars are brought into wnaf with n_wnaf elements each. Then |
|
* for every i < n_wnaf, first each point is added to a "bucket" corresponding |
|
* to the point's wnaf[i]. Second, the buckets are added together such that |
|
* r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ... |
|
*/ |
|
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) { |
|
size_t n_wnaf = WNAF_SIZE(bucket_window+1); |
|
size_t np; |
|
size_t no = 0; |
|
int i; |
|
int j; |
|
|
|
for (np = 0; np < num; ++np) { |
|
if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) { |
|
continue; |
|
} |
|
state->ps[no].input_pos = np; |
|
state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1); |
|
no++; |
|
} |
|
secp256k1_gej_set_infinity(r); |
|
|
|
if (no == 0) { |
|
return 1; |
|
} |
|
|
|
for (i = n_wnaf - 1; i >= 0; i--) { |
|
secp256k1_gej running_sum; |
|
|
|
for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) { |
|
secp256k1_gej_set_infinity(&buckets[j]); |
|
} |
|
|
|
for (np = 0; np < no; ++np) { |
|
int n = state->wnaf_na[np*n_wnaf + i]; |
|
struct secp256k1_pippenger_point_state point_state = state->ps[np]; |
|
secp256k1_ge tmp; |
|
int idx; |
|
|
|
if (i == 0) { |
|
/* correct for wnaf skew */ |
|
int skew = point_state.skew_na; |
|
if (skew) { |
|
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); |
|
secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL); |
|
} |
|
} |
|
if (n > 0) { |
|
idx = (n - 1)/2; |
|
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL); |
|
} else if (n < 0) { |
|
idx = -(n + 1)/2; |
|
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]); |
|
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL); |
|
} |
|
} |
|
|
|
for(j = 0; j < bucket_window; j++) { |
|
secp256k1_gej_double_var(r, r, NULL); |
|
} |
|
|
|
secp256k1_gej_set_infinity(&running_sum); |
|
/* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ... |
|
* = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ... |
|
* + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...) |
|
* using an intermediate running sum: |
|
* running_sum = bucket[0] + bucket[1] + bucket[2] + ... |
|
* |
|
* The doubling is done implicitly by deferring the final window doubling (of 'r'). |
|
*/ |
|
for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) { |
|
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL); |
|
secp256k1_gej_add_var(r, r, &running_sum, NULL); |
|
} |
|
|
|
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL); |
|
secp256k1_gej_double_var(r, r, NULL); |
|
secp256k1_gej_add_var(r, r, &running_sum, NULL); |
|
} |
|
return 1; |
|
} |
|
|
|
/** |
|
* Returns optimal bucket_window (number of bits of a scalar represented by a |
|
* set of buckets) for a given number of points. |
|
*/ |
|
static int secp256k1_pippenger_bucket_window(size_t n) { |
|
#ifdef USE_ENDOMORPHISM |
|
if (n <= 1) { |
|
return 1; |
|
} else if (n <= 4) { |
|
return 2; |
|
} else if (n <= 20) { |
|
return 3; |
|
} else if (n <= 57) { |
|
return 4; |
|
} else if (n <= 136) { |
|
return 5; |
|
} else if (n <= 235) { |
|
return 6; |
|
} else if (n <= 1260) { |
|
return 7; |
|
} else if (n <= 4420) { |
|
return 9; |
|
} else if (n <= 7880) { |
|
return 10; |
|
} else if (n <= 16050) { |
|
return 11; |
|
} else { |
|
return PIPPENGER_MAX_BUCKET_WINDOW; |
|
} |
|
#else |
|
if (n <= 1) { |
|
return 1; |
|
} else if (n <= 11) { |
|
return 2; |
|
} else if (n <= 45) { |
|
return 3; |
|
} else if (n <= 100) { |
|
return 4; |
|
} else if (n <= 275) { |
|
return 5; |
|
} else if (n <= 625) { |
|
return 6; |
|
} else if (n <= 1850) { |
|
return 7; |
|
} else if (n <= 3400) { |
|
return 8; |
|
} else if (n <= 9630) { |
|
return 9; |
|
} else if (n <= 17900) { |
|
return 10; |
|
} else if (n <= 32800) { |
|
return 11; |
|
} else { |
|
return PIPPENGER_MAX_BUCKET_WINDOW; |
|
} |
|
#endif |
|
} |
|
|
|
/** |
|
* Returns the maximum optimal number of points for a bucket_window. |
|
*/ |
|
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) { |
|
switch(bucket_window) { |
|
#ifdef USE_ENDOMORPHISM |
|
case 1: return 1; |
|
case 2: return 4; |
|
case 3: return 20; |
|
case 4: return 57; |
|
case 5: return 136; |
|
case 6: return 235; |
|
case 7: return 1260; |
|
case 8: return 1260; |
|
case 9: return 4420; |
|
case 10: return 7880; |
|
case 11: return 16050; |
|
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; |
|
#else |
|
case 1: return 1; |
|
case 2: return 11; |
|
case 3: return 45; |
|
case 4: return 100; |
|
case 5: return 275; |
|
case 6: return 625; |
|
case 7: return 1850; |
|
case 8: return 3400; |
|
case 9: return 9630; |
|
case 10: return 17900; |
|
case 11: return 32800; |
|
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; |
|
#endif |
|
} |
|
return 0; |
|
} |
|
|
|
|
|
#ifdef USE_ENDOMORPHISM |
|
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) { |
|
secp256k1_scalar tmp = *s1; |
|
secp256k1_scalar_split_lambda(s1, s2, &tmp); |
|
secp256k1_ge_mul_lambda(p2, p1); |
|
|
|
if (secp256k1_scalar_is_high(s1)) { |
|
secp256k1_scalar_negate(s1, s1); |
|
secp256k1_ge_neg(p1, p1); |
|
} |
|
if (secp256k1_scalar_is_high(s2)) { |
|
secp256k1_scalar_negate(s2, s2); |
|
secp256k1_ge_neg(p2, p2); |
|
} |
|
} |
|
#endif |
|
|
|
/** |
|
* Returns the scratch size required for a given number of points (excluding |
|
* base point G) without considering alignment. |
|
*/ |
|
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) { |
|
#ifdef USE_ENDOMORPHISM |
|
size_t entries = 2*n_points + 2; |
|
#else |
|
size_t entries = n_points + 1; |
|
#endif |
|
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); |
|
return ((1<<bucket_window) * sizeof(secp256k1_gej) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size); |
|
} |
|
|
|
static int secp256k1_ecmult_pippenger_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { |
|
/* Use 2(n+1) with the endomorphism, n+1 without, when calculating batch |
|
* sizes. The reason for +1 is that we add the G scalar to the list of |
|
* other scalars. */ |
|
#ifdef USE_ENDOMORPHISM |
|
size_t entries = 2*n_points + 2; |
|
#else |
|
size_t entries = n_points + 1; |
|
#endif |
|
secp256k1_ge *points; |
|
secp256k1_scalar *scalars; |
|
secp256k1_gej *buckets; |
|
struct secp256k1_pippenger_state *state_space; |
|
size_t idx = 0; |
|
size_t point_idx = 0; |
|
int i, j; |
|
int bucket_window; |
|
|
|
(void)ctx; |
|
secp256k1_gej_set_infinity(r); |
|
if (inp_g_sc == NULL && n_points == 0) { |
|
return 1; |
|
} |
|
|
|
bucket_window = secp256k1_pippenger_bucket_window(n_points); |
|
if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points, bucket_window), PIPPENGER_SCRATCH_OBJECTS)) { |
|
return 0; |
|
} |
|
points = (secp256k1_ge *) secp256k1_scratch_alloc(scratch, entries * sizeof(*points)); |
|
scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(scratch, entries * sizeof(*scalars)); |
|
state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(scratch, sizeof(*state_space)); |
|
state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(scratch, entries * sizeof(*state_space->ps)); |
|
state_space->wnaf_na = (int *) secp256k1_scratch_alloc(scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int)); |
|
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(scratch, (1<<bucket_window) * sizeof(*buckets)); |
|
|
|
if (inp_g_sc != NULL) { |
|
scalars[0] = *inp_g_sc; |
|
points[0] = secp256k1_ge_const_g; |
|
idx++; |
|
#ifdef USE_ENDOMORPHISM |
|
secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]); |
|
idx++; |
|
#endif |
|
} |
|
|
|
while (point_idx < n_points) { |
|
if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) { |
|
secp256k1_scratch_deallocate_frame(scratch); |
|
return 0; |
|
} |
|
idx++; |
|
#ifdef USE_ENDOMORPHISM |
|
secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]); |
|
idx++; |
|
#endif |
|
point_idx++; |
|
} |
|
|
|
secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx); |
|
|
|
/* Clear data */ |
|
for(i = 0; (size_t)i < idx; i++) { |
|
secp256k1_scalar_clear(&scalars[i]); |
|
state_space->ps[i].skew_na = 0; |
|
for(j = 0; j < WNAF_SIZE(bucket_window+1); j++) { |
|
state_space->wnaf_na[i * WNAF_SIZE(bucket_window+1) + j] = 0; |
|
} |
|
} |
|
for(i = 0; i < 1<<bucket_window; i++) { |
|
secp256k1_gej_clear(&buckets[i]); |
|
} |
|
secp256k1_scratch_deallocate_frame(scratch); |
|
return 1; |
|
} |
|
|
|
/* Wrapper for secp256k1_ecmult_multi_func interface */ |
|
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { |
|
return secp256k1_ecmult_pippenger_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); |
|
} |
|
|
|
/** |
|
* Returns the maximum number of points in addition to G that can be used with |
|
* a given scratch space. The function ensures that fewer points may also be |
|
* used. |
|
*/ |
|
static size_t secp256k1_pippenger_max_points(secp256k1_scratch *scratch) { |
|
size_t max_alloc = secp256k1_scratch_max_allocation(scratch, PIPPENGER_SCRATCH_OBJECTS); |
|
int bucket_window; |
|
size_t res = 0; |
|
|
|
for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) { |
|
size_t n_points; |
|
size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window); |
|
size_t space_for_points; |
|
size_t space_overhead; |
|
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); |
|
|
|
#ifdef USE_ENDOMORPHISM |
|
entry_size = 2*entry_size; |
|
#endif |
|
space_overhead = ((1<<bucket_window) * sizeof(secp256k1_gej) + entry_size + sizeof(struct secp256k1_pippenger_state)); |
|
if (space_overhead > max_alloc) { |
|
break; |
|
} |
|
space_for_points = max_alloc - space_overhead; |
|
|
|
n_points = space_for_points/entry_size; |
|
n_points = n_points > max_points ? max_points : n_points; |
|
if (n_points > res) { |
|
res = n_points; |
|
} |
|
if (n_points < max_points) { |
|
/* A larger bucket_window may support even more points. But if we |
|
* would choose that then the caller couldn't safely use any number |
|
* smaller than what this function returns */ |
|
break; |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); |
|
static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { |
|
size_t i; |
|
|
|
int (*f)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t); |
|
size_t max_points; |
|
size_t n_batches; |
|
size_t n_batch_points; |
|
|
|
secp256k1_gej_set_infinity(r); |
|
if (inp_g_sc == NULL && n == 0) { |
|
return 1; |
|
} else if (n == 0) { |
|
secp256k1_scalar szero; |
|
secp256k1_scalar_set_int(&szero, 0); |
|
secp256k1_ecmult(ctx, r, r, &szero, inp_g_sc); |
|
return 1; |
|
} |
|
|
|
max_points = secp256k1_pippenger_max_points(scratch); |
|
if (max_points == 0) { |
|
return 0; |
|
} else if (max_points > ECMULT_MAX_POINTS_PER_BATCH) { |
|
max_points = ECMULT_MAX_POINTS_PER_BATCH; |
|
} |
|
n_batches = (n+max_points-1)/max_points; |
|
n_batch_points = (n+n_batches-1)/n_batches; |
|
|
|
if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) { |
|
f = secp256k1_ecmult_pippenger_batch; |
|
} else { |
|
max_points = secp256k1_strauss_max_points(scratch); |
|
if (max_points == 0) { |
|
return 0; |
|
} |
|
n_batches = (n+max_points-1)/max_points; |
|
n_batch_points = (n+n_batches-1)/n_batches; |
|
f = secp256k1_ecmult_strauss_batch; |
|
} |
|
for(i = 0; i < n_batches; i++) { |
|
size_t nbp = n < n_batch_points ? n : n_batch_points; |
|
size_t offset = n_batch_points*i; |
|
secp256k1_gej tmp; |
|
if (!f(ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) { |
|
return 0; |
|
} |
|
secp256k1_gej_add_var(r, r, &tmp, NULL); |
|
n -= nbp; |
|
} |
|
return 1; |
|
} |
|
|
|
#endif /* SECP256K1_ECMULT_IMPL_H */
|
|
|