You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1048 lines
35 KiB

9 years ago
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include "secp256k1.c"
#include "testrand_impl.h"
9 years ago
#ifdef ENABLE_OPENSSL_TESTS
#include "openssl/bn.h"
#include "openssl/ec.h"
#include "openssl/ecdsa.h"
#include "openssl/obj_mac.h"
#endif
static int count = 64;
/***** NUM TESTS *****/
void random_num_negate(secp256k1_num_t *num) {
if (secp256k1_rand32() & 1)
secp256k1_num_negate(num);
}
void random_field_element_test(secp256k1_fe_t *fe) {
do {
unsigned char b32[32];
secp256k1_rand256_test(b32);
secp256k1_num_t num;
secp256k1_num_set_bin(&num, b32, 32);
if (secp256k1_num_cmp(&num, &secp256k1_fe_consts->p) >= 0)
continue;
secp256k1_fe_set_b32(fe, b32);
break;
} while(1);
}
void random_field_element_magnitude(secp256k1_fe_t *fe) {
secp256k1_fe_normalize(fe);
int n = secp256k1_rand32() % 4;
for (int i = 0; i < n; i++) {
secp256k1_fe_negate(fe, fe, 1 + 2*i);
secp256k1_fe_negate(fe, fe, 2 + 2*i);
}
}
void random_group_element_test(secp256k1_ge_t *ge) {
secp256k1_fe_t fe;
do {
random_field_element_test(&fe);
if (secp256k1_ge_set_xo(ge, &fe, secp256k1_rand32() & 1))
break;
} while(1);
}
void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) {
do {
random_field_element_test(&gej->z);
if (!secp256k1_fe_is_zero(&gej->z)) {
break;
}
} while(1);
secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z);
secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z);
secp256k1_fe_mul(&gej->x, &ge->x, &z2);
secp256k1_fe_mul(&gej->y, &ge->y, &z3);
gej->infinity = ge->infinity;
}
void random_num_order_test(secp256k1_num_t *num) {
9 years ago
do {
unsigned char b32[32];
secp256k1_rand256_test(b32);
secp256k1_num_set_bin(num, b32, 32);
if (secp256k1_num_is_zero(num))
continue;
if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0)
continue;
break;
} while(1);
}
void random_scalar_order_test(secp256k1_scalar_t *num) {
do {
unsigned char b32[32];
secp256k1_rand256_test(b32);
int overflow = 0;
secp256k1_scalar_set_b32(num, b32, &overflow);
if (overflow || secp256k1_scalar_is_zero(num))
continue;
break;
} while(1);
}
void random_num_order(secp256k1_num_t *num) {
do {
unsigned char b32[32];
secp256k1_rand256(b32);
secp256k1_num_set_bin(num, b32, 32);
if (secp256k1_num_is_zero(num))
continue;
if (secp256k1_num_cmp(num, &secp256k1_ge_consts->order) >= 0)
continue;
break;
} while(1);
}
void test_num_copy_inc_cmp(void) {
secp256k1_num_t n1,n2;
random_num_order(&n1);
secp256k1_num_copy(&n2, &n1);
CHECK(secp256k1_num_eq(&n1, &n2));
CHECK(secp256k1_num_eq(&n2, &n1));
secp256k1_num_inc(&n2);
CHECK(!secp256k1_num_eq(&n1, &n2));
CHECK(!secp256k1_num_eq(&n2, &n1));
}
void test_num_get_set_hex(void) {
secp256k1_num_t n1,n2;
random_num_order_test(&n1);
char c[64];
secp256k1_num_get_hex(c, 64, &n1);
secp256k1_num_set_hex(&n2, c, 64);
CHECK(secp256k1_num_eq(&n1, &n2));
for (int i=0; i<64; i++) {
// check whether the lower 4 bits correspond to the last hex character
int low1 = secp256k1_num_shift(&n1, 4);
int lowh = c[63];
int low2 = ((lowh>>6)*9+(lowh-'0'))&15;
CHECK(low1 == low2);
// shift bits off the hex representation, and compare
memmove(c+1, c, 63);
c[0] = '0';
secp256k1_num_set_hex(&n2, c, 64);
CHECK(secp256k1_num_eq(&n1, &n2));
}
}
void test_num_get_set_bin(void) {
secp256k1_num_t n1,n2;
random_num_order_test(&n1);
unsigned char c[32];
secp256k1_num_get_bin(c, 32, &n1);
secp256k1_num_set_bin(&n2, c, 32);
CHECK(secp256k1_num_eq(&n1, &n2));
for (int i=0; i<32; i++) {
// check whether the lower 8 bits correspond to the last byte
int low1 = secp256k1_num_shift(&n1, 8);
int low2 = c[31];
CHECK(low1 == low2);
// shift bits off the byte representation, and compare
memmove(c+1, c, 31);
c[0] = 0;
secp256k1_num_set_bin(&n2, c, 32);
CHECK(secp256k1_num_eq(&n1, &n2));
}
}
void run_num_int(void) {
secp256k1_num_t n1;
for (int i=-255; i<256; i++) {
unsigned char c1[3] = {};
c1[2] = abs(i);
unsigned char c2[3] = {0x11,0x22,0x33};
secp256k1_num_set_int(&n1, i);
secp256k1_num_get_bin(c2, 3, &n1);
CHECK(memcmp(c1, c2, 3) == 0);
}
}
void test_num_negate(void) {
secp256k1_num_t n1;
secp256k1_num_t n2;
random_num_order_test(&n1); // n1 = R
random_num_negate(&n1);
secp256k1_num_copy(&n2, &n1); // n2 = R
secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0
CHECK(secp256k1_num_is_zero(&n1));
secp256k1_num_copy(&n1, &n2); // n1 = R
secp256k1_num_negate(&n1); // n1 = -R
CHECK(!secp256k1_num_is_zero(&n1));
secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0
CHECK(secp256k1_num_is_zero(&n1));
secp256k1_num_copy(&n1, &n2); // n1 = R
secp256k1_num_negate(&n1); // n1 = -R
CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
secp256k1_num_negate(&n1); // n1 = R
CHECK(secp256k1_num_eq(&n1, &n2));
}
void test_num_add_sub(void) {
int r = secp256k1_rand32();
secp256k1_num_t n1;
secp256k1_num_t n2;
random_num_order_test(&n1); // n1 = R1
if (r & 1) {
random_num_negate(&n1);
}
random_num_order_test(&n2); // n2 = R2
if (r & 2) {
random_num_negate(&n2);
}
secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
secp256k1_num_add(&n1p2, &n1, &n2); // n1p2 = R1 + R2
secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1
secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2
secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1
CHECK(secp256k1_num_eq(&n1p2, &n2p1));
CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1
CHECK(secp256k1_num_eq(&n2m1, &n1m2));
CHECK(!secp256k1_num_eq(&n2m1, &n1));
secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1
CHECK(secp256k1_num_eq(&n2m1, &n1));
CHECK(!secp256k1_num_eq(&n2p1, &n1));
secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1
CHECK(secp256k1_num_eq(&n2p1, &n1));
}
void run_num_smalltests(void) {
for (int i=0; i<100*count; i++) {
test_num_copy_inc_cmp();
test_num_get_set_hex();
test_num_get_set_bin();
test_num_negate();
test_num_add_sub();
}
run_num_int();
}
/***** SCALAR TESTS *****/
int secp256k1_scalar_eq(const secp256k1_scalar_t *s1, const secp256k1_scalar_t *s2) {
secp256k1_scalar_t t;
secp256k1_scalar_negate(&t, s2);
secp256k1_scalar_add(&t, &t, s1);
int ret = secp256k1_scalar_is_zero(&t);
return ret;
}
void scalar_test(void) {
unsigned char c[32];
// Set 's' to a random scalar, with value 'snum'.
secp256k1_rand256_test(c);
secp256k1_scalar_t s;
secp256k1_scalar_set_b32(&s, c, NULL);
secp256k1_num_t snum;
secp256k1_num_set_bin(&snum, c, 32);
secp256k1_num_mod(&snum, &secp256k1_ge_consts->order);
// Set 's1' to a random scalar, with value 's1num'.
secp256k1_rand256_test(c);
secp256k1_scalar_t s1;
secp256k1_scalar_set_b32(&s1, c, NULL);
secp256k1_num_t s1num;
secp256k1_num_set_bin(&s1num, c, 32);
secp256k1_num_mod(&s1num, &secp256k1_ge_consts->order);
// Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'.
secp256k1_rand256_test(c);
secp256k1_scalar_t s2;
int overflow = 0;
secp256k1_scalar_set_b32(&s2, c, &overflow);
secp256k1_num_t s2num;
secp256k1_num_set_bin(&s2num, c, 32);
secp256k1_num_mod(&s2num, &secp256k1_ge_consts->order);
{
// Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it.
secp256k1_num_t n, t, m;
secp256k1_num_set_int(&n, 0);
secp256k1_num_set_int(&m, 16);
for (int i = 0; i < 256; i += 4) {
secp256k1_num_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
secp256k1_num_mul(&n, &n, &m);
secp256k1_num_add(&n, &n, &t);
}
CHECK(secp256k1_num_eq(&n, &snum));
}
{
// Test that get_b32 returns the same as get_bin on the number.
unsigned char r1[32];
secp256k1_scalar_get_b32(r1, &s2);
unsigned char r2[32];
secp256k1_num_get_bin(r2, 32, &s2num);
CHECK(memcmp(r1, r2, 32) == 0);
// If no overflow occurred when assigning, it should also be equal to the original byte array.
CHECK((memcmp(r1, c, 32) == 0) == (overflow == 0));
}
{
// Test that adding the scalars together is equal to adding their numbers together modulo the order.
secp256k1_num_t rnum;
secp256k1_num_add(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
secp256k1_scalar_t r;
secp256k1_scalar_add(&r, &s, &s2);
secp256k1_num_t r2num;
secp256k1_scalar_get_num(&r2num, &r);
CHECK(secp256k1_num_eq(&rnum, &r2num));
}
{
// Test that multipying the scalars is equal to multiplying their numbers modulo the order.
secp256k1_num_t rnum;
secp256k1_num_mul(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
secp256k1_scalar_t r;
secp256k1_scalar_mul(&r, &s, &s2);
secp256k1_num_t r2num;
secp256k1_scalar_get_num(&r2num, &r);
CHECK(secp256k1_num_eq(&rnum, &r2num));
// The result can only be zero if at least one of the factors was zero.
CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
// The results can only be equal to one of the factors if that factor was zero, or the other factor was one.
CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
}
{
// Check that comparison with zero matches comparison with zero on the number.
CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
// Check that comparison with the half order is equal to testing for high scalar.
CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &secp256k1_ge_consts->half_order) > 0));
secp256k1_scalar_t neg;
secp256k1_scalar_negate(&neg, &s);
secp256k1_num_t negnum;
secp256k1_num_sub(&negnum, &secp256k1_ge_consts->order, &snum);
secp256k1_num_mod(&negnum, &secp256k1_ge_consts->order);
// Check that comparison with the half order is equal to testing for high scalar after negation.
CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &secp256k1_ge_consts->half_order) > 0));
// Negating should change the high property, unless the value was already zero.
CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
secp256k1_num_t negnum2;
secp256k1_scalar_get_num(&negnum2, &neg);
// Negating a scalar should be equal to (order - n) mod order on the number.
CHECK(secp256k1_num_eq(&negnum, &negnum2));
secp256k1_scalar_add(&neg, &neg, &s);
// Adding a number to its negation should result in zero.
CHECK(secp256k1_scalar_is_zero(&neg));
secp256k1_scalar_negate(&neg, &neg);
// Negating zero should still result in zero.
CHECK(secp256k1_scalar_is_zero(&neg));
}
{
// Test that scalar inverses are equal to the inverse of their number modulo the order.
if (!secp256k1_scalar_is_zero(&s)) {
secp256k1_scalar_t inv;
secp256k1_scalar_inverse(&inv, &s);
secp256k1_num_t invnum;
secp256k1_num_mod_inverse(&invnum, &snum, &secp256k1_ge_consts->order);
secp256k1_num_t invnum2;
secp256k1_scalar_get_num(&invnum2, &inv);
CHECK(secp256k1_num_eq(&invnum, &invnum2));
secp256k1_scalar_mul(&inv, &inv, &s);
// Multiplying a scalar with its inverse must result in one.
CHECK(secp256k1_scalar_is_one(&inv));
secp256k1_scalar_inverse(&inv, &inv);
// Inverting one must result in one.
CHECK(secp256k1_scalar_is_one(&inv));
}
}
{
// Test commutativity of add.
secp256k1_scalar_t r1, r2;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_add(&r2, &s2, &s1);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
{
// Test commutativity of mul.
secp256k1_scalar_t r1, r2;
secp256k1_scalar_mul(&r1, &s1, &s2);
secp256k1_scalar_mul(&r2, &s2, &s1);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
{
// Test associativity of add.
secp256k1_scalar_t r1, r2;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_add(&r1, &r1, &s);
secp256k1_scalar_add(&r2, &s2, &s);
secp256k1_scalar_add(&r2, &s1, &r2);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
{
// Test associativity of mul.
secp256k1_scalar_t r1, r2;
secp256k1_scalar_mul(&r1, &s1, &s2);
secp256k1_scalar_mul(&r1, &r1, &s);
secp256k1_scalar_mul(&r2, &s2, &s);
secp256k1_scalar_mul(&r2, &s1, &r2);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
{
// Test distributitivity of mul over add.
secp256k1_scalar_t r1, r2, t;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_mul(&r1, &r1, &s);
secp256k1_scalar_mul(&r2, &s1, &s);
secp256k1_scalar_mul(&t, &s2, &s);
secp256k1_scalar_add(&r2, &r2, &t);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
{
// Test square.
secp256k1_scalar_t r1, r2;
secp256k1_scalar_sqr(&r1, &s1);
secp256k1_scalar_mul(&r2, &s1, &s1);
CHECK(secp256k1_scalar_eq(&r1, &r2));
}
}
void run_scalar_tests(void) {
for (int i = 0; i < 128 * count; i++) {
scalar_test();
}
}
/***** FIELD TESTS *****/
void random_fe(secp256k1_fe_t *x) {
unsigned char bin[32];
secp256k1_rand256(bin);
secp256k1_fe_set_b32(x, bin);
}
void random_fe_non_zero(secp256k1_fe_t *nz) {
int tries = 10;
while (--tries >= 0) {
random_fe(nz);
secp256k1_fe_normalize(nz);
if (!secp256k1_fe_is_zero(nz))
break;
}
// Infinitesimal probability of spurious failure here
CHECK(tries >= 0);
}
void random_fe_non_square(secp256k1_fe_t *ns) {
random_fe_non_zero(ns);
secp256k1_fe_t r;
if (secp256k1_fe_sqrt(&r, ns)) {
secp256k1_fe_negate(ns, ns, 1);
}
}
int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an);
secp256k1_fe_t bn = *b; secp256k1_fe_normalize(&bn);
return secp256k1_fe_equal(&an, &bn);
}
int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai);
secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1);
return check_fe_equal(&x, &one);
}
void run_field_inv(void) {
secp256k1_fe_t x, xi, xii;
for (int i=0; i<10*count; i++) {
random_fe_non_zero(&x);
secp256k1_fe_inv(&xi, &x);
CHECK(check_fe_inverse(&x, &xi));
secp256k1_fe_inv(&xii, &xi);
CHECK(check_fe_equal(&x, &xii));
}
}
void run_field_inv_var(void) {
secp256k1_fe_t x, xi, xii;
for (int i=0; i<10*count; i++) {
random_fe_non_zero(&x);
secp256k1_fe_inv_var(&xi, &x);
CHECK(check_fe_inverse(&x, &xi));
secp256k1_fe_inv_var(&xii, &xi);
CHECK(check_fe_equal(&x, &xii));
}
}
void run_field_inv_all(void) {
secp256k1_fe_t x[16], xi[16], xii[16];
// Check it's safe to call for 0 elements
secp256k1_fe_inv_all(0, xi, x);
for (int i=0; i<count; i++) {
size_t len = (secp256k1_rand32() & 15) + 1;
for (size_t j=0; j<len; j++)
random_fe_non_zero(&x[j]);
secp256k1_fe_inv_all(len, xi, x);
for (size_t j=0; j<len; j++)
CHECK(check_fe_inverse(&x[j], &xi[j]));
secp256k1_fe_inv_all(len, xii, xi);
for (size_t j=0; j<len; j++)
CHECK(check_fe_equal(&x[j], &xii[j]));
}
}
void run_field_inv_all_var(void) {
secp256k1_fe_t x[16], xi[16], xii[16];
// Check it's safe to call for 0 elements
secp256k1_fe_inv_all_var(0, xi, x);
for (int i=0; i<count; i++) {
size_t len = (secp256k1_rand32() & 15) + 1;
for (size_t j=0; j<len; j++)
random_fe_non_zero(&x[j]);
secp256k1_fe_inv_all_var(len, xi, x);
for (size_t j=0; j<len; j++)
CHECK(check_fe_inverse(&x[j], &xi[j]));
secp256k1_fe_inv_all_var(len, xii, xi);
for (size_t j=0; j<len; j++)
CHECK(check_fe_equal(&x[j], &xii[j]));
}
}
void run_sqr(void) {
secp256k1_fe_t x, s;
{
secp256k1_fe_set_int(&x, 1);
secp256k1_fe_negate(&x, &x, 1);
for (int i=1; i<=512; ++i) {
secp256k1_fe_mul_int(&x, 2);
secp256k1_fe_normalize(&x);
secp256k1_fe_sqr(&s, &x);
}
}
}
void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
secp256k1_fe_t r1, r2;
int v = secp256k1_fe_sqrt(&r1, a);
CHECK((v == 0) == (k == NULL));
if (k != NULL) {
// Check that the returned root is +/- the given known answer
secp256k1_fe_negate(&r2, &r1, 1);
secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
}
}
void run_sqrt(void) {
secp256k1_fe_t ns, x, s, t;
// Check sqrt(0) is 0
secp256k1_fe_set_int(&x, 0);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
// Check sqrt of small squares (and their negatives)
for (int i=1; i<=100; i++) {
secp256k1_fe_set_int(&x, i);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
secp256k1_fe_negate(&t, &s, 1);
test_sqrt(&t, NULL);
}
// Consistency checks for large random values
for (int i=0; i<10; i++) {
random_fe_non_square(&ns);
for (int j=0; j<count; j++) {
random_fe(&x);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
secp256k1_fe_negate(&t, &s, 1);
test_sqrt(&t, NULL);
secp256k1_fe_mul(&t, &s, &ns);
test_sqrt(&t, NULL);
}
}
}
/***** GROUP TESTS *****/
int ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) {
if (a->infinity && b->infinity)
return 1;
return check_fe_equal(&a->x, &b->x) && check_fe_equal(&a->y, &b->y);
}
void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
secp256k1_ge_t bb;
secp256k1_gej_t bj = *b;
secp256k1_ge_set_gej_var(&bb, &bj);
CHECK(ge_equals_ge(a, &bb));
}
void gej_equals_gej(const secp256k1_gej_t *a, const secp256k1_gej_t *b) {
secp256k1_ge_t aa, bb;
secp256k1_gej_t aj = *a, bj = *b;
secp256k1_ge_set_gej_var(&aa, &aj);
secp256k1_ge_set_gej_var(&bb, &bj);
CHECK(ge_equals_ge(&aa, &bb));
}
void test_ge(void) {
secp256k1_ge_t a, b, i, n;
random_group_element_test(&a);
random_group_element_test(&b);
n = a;
secp256k1_fe_normalize(&a.y);
secp256k1_fe_negate(&n.y, &a.y, 1);
secp256k1_ge_set_infinity(&i);
random_field_element_magnitude(&a.x);
random_field_element_magnitude(&a.y);
random_field_element_magnitude(&b.x);
random_field_element_magnitude(&b.y);
random_field_element_magnitude(&n.x);
random_field_element_magnitude(&n.y);
secp256k1_gej_t aj, bj, ij, nj;
random_group_element_jacobian_test(&aj, &a);
random_group_element_jacobian_test(&bj, &b);
secp256k1_gej_set_infinity(&ij);
random_group_element_jacobian_test(&nj, &n);
random_field_element_magnitude(&aj.x);
random_field_element_magnitude(&aj.y);
random_field_element_magnitude(&aj.z);
random_field_element_magnitude(&bj.x);
random_field_element_magnitude(&bj.y);
random_field_element_magnitude(&bj.z);
random_field_element_magnitude(&nj.x);
random_field_element_magnitude(&nj.y);
random_field_element_magnitude(&nj.z);
// gej + gej adds
secp256k1_gej_t aaj; secp256k1_gej_add_var(&aaj, &aj, &aj);
secp256k1_gej_t abj; secp256k1_gej_add_var(&abj, &aj, &bj);
secp256k1_gej_t aij; secp256k1_gej_add_var(&aij, &aj, &ij);
secp256k1_gej_t anj; secp256k1_gej_add_var(&anj, &aj, &nj);
secp256k1_gej_t iaj; secp256k1_gej_add_var(&iaj, &ij, &aj);
secp256k1_gej_t iij; secp256k1_gej_add_var(&iij, &ij, &ij);
// gej + ge adds
secp256k1_gej_t aa; secp256k1_gej_add_ge_var(&aa, &aj, &a);
secp256k1_gej_t ab; secp256k1_gej_add_ge_var(&ab, &aj, &b);
secp256k1_gej_t ai; secp256k1_gej_add_ge_var(&ai, &aj, &i);
secp256k1_gej_t an; secp256k1_gej_add_ge_var(&an, &aj, &n);
secp256k1_gej_t ia; secp256k1_gej_add_ge_var(&ia, &ij, &a);
secp256k1_gej_t ii; secp256k1_gej_add_ge_var(&ii, &ij, &i);
// const gej + ge adds
secp256k1_gej_t aac; secp256k1_gej_add_ge(&aac, &aj, &a);
secp256k1_gej_t abc; secp256k1_gej_add_ge(&abc, &aj, &b);
secp256k1_gej_t anc; secp256k1_gej_add_ge(&anc, &aj, &n);
secp256k1_gej_t iac; secp256k1_gej_add_ge(&iac, &ij, &a);
CHECK(secp256k1_gej_is_infinity(&an));
CHECK(secp256k1_gej_is_infinity(&anj));
CHECK(secp256k1_gej_is_infinity(&anc));
gej_equals_gej(&aa, &aaj);
gej_equals_gej(&aa, &aac);
gej_equals_gej(&ab, &abj);
gej_equals_gej(&ab, &abc);
gej_equals_gej(&an, &anj);
gej_equals_gej(&an, &anc);
gej_equals_gej(&ia, &iaj);
gej_equals_gej(&ai, &aij);
gej_equals_gej(&ii, &iij);
ge_equals_gej(&a, &ai);
ge_equals_gej(&a, &ai);
ge_equals_gej(&a, &iaj);
ge_equals_gej(&a, &iaj);
ge_equals_gej(&a, &iac);
}
void run_ge(void) {
for (int i = 0; i < 2000*count; i++) {
test_ge();
}
}
/***** ECMULT TESTS *****/
void run_ecmult_chain(void) {
// random starting point A (on the curve)
secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64);
secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64);
secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay);
// two random initial factors xn and gn
secp256k1_num_t xn;
secp256k1_num_set_hex(&xn, "84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407", 64);
secp256k1_num_t gn;
secp256k1_num_set_hex(&gn, "a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de", 64);
// two small multipliers to be applied to xn and gn in every iteration:
secp256k1_num_t xf;
secp256k1_num_set_hex(&xf, "1337", 4);
secp256k1_num_t gf;
secp256k1_num_set_hex(&gf, "7113", 4);
// accumulators with the resulting coefficients to A and G
secp256k1_num_t ae;
secp256k1_num_set_int(&ae, 1);
secp256k1_num_t ge;
secp256k1_num_set_int(&ge, 0);
// the point being computed
secp256k1_gej_t x = a;
const secp256k1_num_t *order = &secp256k1_ge_consts->order;
for (int i=0; i<200*count; i++) {
10 years ago
// in each iteration, compute X = xn*X + gn*G;
secp256k1_ecmult(&x, &x, &xn, &gn);
10 years ago
// also compute ae and ge: the actual accumulated factors for A and G
// if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G)
secp256k1_num_mod_mul(&ae, &ae, &xn, order);
secp256k1_num_mod_mul(&ge, &ge, &xn, order);
secp256k1_num_add(&ge, &ge, &gn);
9 years ago
secp256k1_num_mod(&ge, order);
10 years ago
// modify xn and gn
secp256k1_num_mod_mul(&xn, &xn, &xf, order);
secp256k1_num_mod_mul(&gn, &gn, &gf, order);
// verify
if (i == 19999) {
char res[132]; int resl = 132;
secp256k1_gej_get_hex(res, &resl, &x);
CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
}
}
10 years ago
// redo the computation, but directly with the resulting ae and ge coefficients:
secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge);
char res[132]; int resl = 132;
char res2[132]; int resl2 = 132;
secp256k1_gej_get_hex(res, &resl, &x);
secp256k1_gej_get_hex(res2, &resl2, &x2);
CHECK(strcmp(res, res2) == 0);
CHECK(strlen(res) == 131);
}
void test_point_times_order(const secp256k1_gej_t *point) {
// multiplying a point by the order results in O
const secp256k1_num_t *order = &secp256k1_ge_consts->order;
secp256k1_num_t zero;
secp256k1_num_set_int(&zero, 0);
secp256k1_gej_t res;
secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G;
CHECK(secp256k1_gej_is_infinity(&res));
10 years ago
}
void run_point_times_order(void) {
secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2);
10 years ago
for (int i=0; i<500; i++) {
secp256k1_ge_t p;
if (secp256k1_ge_set_xo(&p, &x, 1)) {
CHECK(secp256k1_ge_is_valid(&p));
secp256k1_gej_t j;
secp256k1_gej_set_ge(&j, &p);
CHECK(secp256k1_gej_is_valid(&j));
test_point_times_order(&j);
}
secp256k1_fe_sqr(&x, &x);
10 years ago
}
char c[65]; int cl=65;
secp256k1_fe_get_hex(c, &cl, &x);
CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
10 years ago
}
void test_wnaf(const secp256k1_num_t *number, int w) {
secp256k1_num_t x, two, t;
secp256k1_num_set_int(&x, 0);
secp256k1_num_set_int(&two, 2);
int wnaf[257];
int bits = secp256k1_ecmult_wnaf(wnaf, number, w);
10 years ago
int zeroes = -1;
for (int i=bits-1; i>=0; i--) {
secp256k1_num_mul(&x, &x, &two);
int v = wnaf[i];
10 years ago
if (v) {
CHECK(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1
10 years ago
zeroes=0;
CHECK((v & 1) == 1); // check non-zero elements are odd
CHECK(v <= (1 << (w-1)) - 1); // check range below
CHECK(v >= -(1 << (w-1)) - 1); // check range above
10 years ago
} else {
CHECK(zeroes != -1); // check that no unnecessary zero padding exists
10 years ago
zeroes++;
}
secp256k1_num_set_int(&t, v);
secp256k1_num_add(&x, &x, &t);
10 years ago
}
CHECK(secp256k1_num_eq(&x, number)); // check that wnaf represents number
10 years ago
}
void run_wnaf(void) {
9 years ago
secp256k1_num_t n;
for (int i=0; i<count; i++) {
9 years ago
random_num_order(&n);
if (i % 1)
secp256k1_num_negate(&n);
test_wnaf(&n, 4+(i%10));
10 years ago
}
}
void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, const secp256k1_scalar_t *msg, int *recid) {
secp256k1_scalar_t nonce;
9 years ago
do {
random_scalar_order_test(&nonce);
9 years ago
} while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid));
}
void test_ecdsa_sign_verify(void) {
secp256k1_scalar_t msg, key;
random_scalar_order_test(&msg);
random_scalar_order_test(&key);
secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key);
secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj);
secp256k1_ecdsa_sig_t sig;
9 years ago
random_sign(&sig, &key, &msg, NULL);
secp256k1_num_t msg_num;
secp256k1_scalar_get_num(&msg_num, &msg);
CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg_num));
secp256k1_num_inc(&msg_num);
CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg_num));
10 years ago
}
void run_ecdsa_sign_verify(void) {
for (int i=0; i<10*count; i++) {
10 years ago
test_ecdsa_sign_verify();
}
}