You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2892 lines
74 KiB
2892 lines
74 KiB
// |
|
// Copyright (c) 2013 Mikko Mononen memon@inside.org |
|
// |
|
// This software is provided 'as-is', without any express or implied |
|
// warranty. In no event will the authors be held liable for any damages |
|
// arising from the use of this software. |
|
// Permission is granted to anyone to use this software for any purpose, |
|
// including commercial applications, and to alter it and redistribute it |
|
// freely, subject to the following restrictions: |
|
// 1. The origin of this software must not be misrepresented; you must not |
|
// claim that you wrote the original software. If you use this software |
|
// in a product, an acknowledgment in the product documentation would be |
|
// appreciated but is not required. |
|
// 2. Altered source versions must be plainly marked as such, and must not be |
|
// misrepresented as being the original software. |
|
// 3. This notice may not be removed or altered from any source distribution. |
|
// |
|
|
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <memory.h> |
|
|
|
#include "nanovg.h" |
|
#define FONTSTASH_IMPLEMENTATION |
|
#include "fontstash.h" |
|
#define STB_IMAGE_IMPLEMENTATION |
|
#include "stb_image.h" |
|
|
|
#ifdef _MSC_VER |
|
#pragma warning(disable: 4100) // unreferenced formal parameter |
|
#pragma warning(disable: 4127) // conditional expression is constant |
|
#pragma warning(disable: 4204) // nonstandard extension used : non-constant aggregate initializer |
|
#pragma warning(disable: 4706) // assignment within conditional expression |
|
#endif |
|
|
|
#define NVG_INIT_FONTIMAGE_SIZE 512 |
|
#define NVG_MAX_FONTIMAGE_SIZE 2048 |
|
#define NVG_MAX_FONTIMAGES 4 |
|
|
|
#define NVG_INIT_COMMANDS_SIZE 256 |
|
#define NVG_INIT_POINTS_SIZE 128 |
|
#define NVG_INIT_PATHS_SIZE 16 |
|
#define NVG_INIT_VERTS_SIZE 256 |
|
#define NVG_MAX_STATES 32 |
|
|
|
#define NVG_KAPPA90 0.5522847493f // Length proportional to radius of a cubic bezier handle for 90deg arcs. |
|
|
|
#define NVG_COUNTOF(arr) (sizeof(arr) / sizeof(0[arr])) |
|
|
|
|
|
enum NVGcommands { |
|
NVG_MOVETO = 0, |
|
NVG_LINETO = 1, |
|
NVG_BEZIERTO = 2, |
|
NVG_CLOSE = 3, |
|
NVG_WINDING = 4, |
|
}; |
|
|
|
enum NVGpointFlags |
|
{ |
|
NVG_PT_CORNER = 0x01, |
|
NVG_PT_LEFT = 0x02, |
|
NVG_PT_BEVEL = 0x04, |
|
NVG_PR_INNERBEVEL = 0x08, |
|
}; |
|
|
|
struct NVGstate { |
|
NVGcompositeOperationState compositeOperation; |
|
int shapeAntiAlias; |
|
NVGpaint fill; |
|
NVGpaint stroke; |
|
float strokeWidth; |
|
float miterLimit; |
|
int lineJoin; |
|
int lineCap; |
|
float alpha; |
|
float xform[6]; |
|
NVGscissor scissor; |
|
float fontSize; |
|
float letterSpacing; |
|
float lineHeight; |
|
float fontBlur; |
|
int textAlign; |
|
int fontId; |
|
}; |
|
typedef struct NVGstate NVGstate; |
|
|
|
struct NVGpoint { |
|
float x,y; |
|
float dx, dy; |
|
float len; |
|
float dmx, dmy; |
|
unsigned char flags; |
|
}; |
|
typedef struct NVGpoint NVGpoint; |
|
|
|
struct NVGpathCache { |
|
NVGpoint* points; |
|
int npoints; |
|
int cpoints; |
|
NVGpath* paths; |
|
int npaths; |
|
int cpaths; |
|
NVGvertex* verts; |
|
int nverts; |
|
int cverts; |
|
float bounds[4]; |
|
}; |
|
typedef struct NVGpathCache NVGpathCache; |
|
|
|
struct NVGcontext { |
|
NVGparams params; |
|
float* commands; |
|
int ccommands; |
|
int ncommands; |
|
float commandx, commandy; |
|
NVGstate states[NVG_MAX_STATES]; |
|
int nstates; |
|
NVGpathCache* cache; |
|
float tessTol; |
|
float distTol; |
|
float fringeWidth; |
|
float devicePxRatio; |
|
struct FONScontext* fs; |
|
int fontImages[NVG_MAX_FONTIMAGES]; |
|
int fontImageIdx; |
|
int drawCallCount; |
|
int fillTriCount; |
|
int strokeTriCount; |
|
int textTriCount; |
|
}; |
|
|
|
static float nvg__sqrtf(float a) { return sqrtf(a); } |
|
static float nvg__modf(float a, float b) { return fmodf(a, b); } |
|
static float nvg__sinf(float a) { return sinf(a); } |
|
static float nvg__cosf(float a) { return cosf(a); } |
|
static float nvg__tanf(float a) { return tanf(a); } |
|
static float nvg__atan2f(float a,float b) { return atan2f(a, b); } |
|
static float nvg__acosf(float a) { return acosf(a); } |
|
|
|
static int nvg__mini(int a, int b) { return a < b ? a : b; } |
|
static int nvg__maxi(int a, int b) { return a > b ? a : b; } |
|
static int nvg__clampi(int a, int mn, int mx) { return a < mn ? mn : (a > mx ? mx : a); } |
|
static float nvg__minf(float a, float b) { return a < b ? a : b; } |
|
static float nvg__maxf(float a, float b) { return a > b ? a : b; } |
|
static float nvg__absf(float a) { return a >= 0.0f ? a : -a; } |
|
static float nvg__signf(float a) { return a >= 0.0f ? 1.0f : -1.0f; } |
|
static float nvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } |
|
static float nvg__cross(float dx0, float dy0, float dx1, float dy1) { return dx1*dy0 - dx0*dy1; } |
|
|
|
static float nvg__normalize(float *x, float* y) |
|
{ |
|
float d = nvg__sqrtf((*x)*(*x) + (*y)*(*y)); |
|
if (d > 1e-6f) { |
|
float id = 1.0f / d; |
|
*x *= id; |
|
*y *= id; |
|
} |
|
return d; |
|
} |
|
|
|
|
|
static void nvg__deletePathCache(NVGpathCache* c) |
|
{ |
|
if (c == NULL) return; |
|
if (c->points != NULL) free(c->points); |
|
if (c->paths != NULL) free(c->paths); |
|
if (c->verts != NULL) free(c->verts); |
|
free(c); |
|
} |
|
|
|
static NVGpathCache* nvg__allocPathCache(void) |
|
{ |
|
NVGpathCache* c = (NVGpathCache*)malloc(sizeof(NVGpathCache)); |
|
if (c == NULL) goto error; |
|
memset(c, 0, sizeof(NVGpathCache)); |
|
|
|
c->points = (NVGpoint*)malloc(sizeof(NVGpoint)*NVG_INIT_POINTS_SIZE); |
|
if (!c->points) goto error; |
|
c->npoints = 0; |
|
c->cpoints = NVG_INIT_POINTS_SIZE; |
|
|
|
c->paths = (NVGpath*)malloc(sizeof(NVGpath)*NVG_INIT_PATHS_SIZE); |
|
if (!c->paths) goto error; |
|
c->npaths = 0; |
|
c->cpaths = NVG_INIT_PATHS_SIZE; |
|
|
|
c->verts = (NVGvertex*)malloc(sizeof(NVGvertex)*NVG_INIT_VERTS_SIZE); |
|
if (!c->verts) goto error; |
|
c->nverts = 0; |
|
c->cverts = NVG_INIT_VERTS_SIZE; |
|
|
|
return c; |
|
error: |
|
nvg__deletePathCache(c); |
|
return NULL; |
|
} |
|
|
|
static void nvg__setDevicePixelRatio(NVGcontext* ctx, float ratio) |
|
{ |
|
ctx->tessTol = 0.25f / ratio; |
|
ctx->distTol = 0.01f / ratio; |
|
ctx->fringeWidth = 1.0f / ratio; |
|
ctx->devicePxRatio = ratio; |
|
} |
|
|
|
static NVGcompositeOperationState nvg__compositeOperationState(int op) |
|
{ |
|
int sfactor, dfactor; |
|
|
|
if (op == NVG_SOURCE_OVER) |
|
{ |
|
sfactor = NVG_ONE; |
|
dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
|
} |
|
else if (op == NVG_SOURCE_IN) |
|
{ |
|
sfactor = NVG_DST_ALPHA; |
|
dfactor = NVG_ZERO; |
|
} |
|
else if (op == NVG_SOURCE_OUT) |
|
{ |
|
sfactor = NVG_ONE_MINUS_DST_ALPHA; |
|
dfactor = NVG_ZERO; |
|
} |
|
else if (op == NVG_ATOP) |
|
{ |
|
sfactor = NVG_DST_ALPHA; |
|
dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
|
} |
|
else if (op == NVG_DESTINATION_OVER) |
|
{ |
|
sfactor = NVG_ONE_MINUS_DST_ALPHA; |
|
dfactor = NVG_ONE; |
|
} |
|
else if (op == NVG_DESTINATION_IN) |
|
{ |
|
sfactor = NVG_ZERO; |
|
dfactor = NVG_SRC_ALPHA; |
|
} |
|
else if (op == NVG_DESTINATION_OUT) |
|
{ |
|
sfactor = NVG_ZERO; |
|
dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
|
} |
|
else if (op == NVG_DESTINATION_ATOP) |
|
{ |
|
sfactor = NVG_ONE_MINUS_DST_ALPHA; |
|
dfactor = NVG_SRC_ALPHA; |
|
} |
|
else if (op == NVG_LIGHTER) |
|
{ |
|
sfactor = NVG_ONE; |
|
dfactor = NVG_ONE; |
|
} |
|
else if (op == NVG_COPY) |
|
{ |
|
sfactor = NVG_ONE; |
|
dfactor = NVG_ZERO; |
|
} |
|
else if (op == NVG_XOR) |
|
{ |
|
sfactor = NVG_ONE_MINUS_DST_ALPHA; |
|
dfactor = NVG_ONE_MINUS_SRC_ALPHA; |
|
} |
|
else |
|
{ |
|
sfactor = NVG_ONE; |
|
dfactor = NVG_ZERO; |
|
} |
|
|
|
NVGcompositeOperationState state; |
|
state.srcRGB = sfactor; |
|
state.dstRGB = dfactor; |
|
state.srcAlpha = sfactor; |
|
state.dstAlpha = dfactor; |
|
return state; |
|
} |
|
|
|
static NVGstate* nvg__getState(NVGcontext* ctx) |
|
{ |
|
return &ctx->states[ctx->nstates-1]; |
|
} |
|
|
|
NVGcontext* nvgCreateInternal(NVGparams* params) |
|
{ |
|
FONSparams fontParams; |
|
NVGcontext* ctx = (NVGcontext*)malloc(sizeof(NVGcontext)); |
|
int i; |
|
if (ctx == NULL) goto error; |
|
memset(ctx, 0, sizeof(NVGcontext)); |
|
|
|
ctx->params = *params; |
|
for (i = 0; i < NVG_MAX_FONTIMAGES; i++) |
|
ctx->fontImages[i] = 0; |
|
|
|
ctx->commands = (float*)malloc(sizeof(float)*NVG_INIT_COMMANDS_SIZE); |
|
if (!ctx->commands) goto error; |
|
ctx->ncommands = 0; |
|
ctx->ccommands = NVG_INIT_COMMANDS_SIZE; |
|
|
|
ctx->cache = nvg__allocPathCache(); |
|
if (ctx->cache == NULL) goto error; |
|
|
|
nvgSave(ctx); |
|
nvgReset(ctx); |
|
|
|
nvg__setDevicePixelRatio(ctx, 1.0f); |
|
|
|
if (ctx->params.renderCreate(ctx->params.userPtr) == 0) goto error; |
|
|
|
// Init font rendering |
|
memset(&fontParams, 0, sizeof(fontParams)); |
|
fontParams.width = NVG_INIT_FONTIMAGE_SIZE; |
|
fontParams.height = NVG_INIT_FONTIMAGE_SIZE; |
|
fontParams.flags = FONS_ZERO_TOPLEFT; |
|
fontParams.renderCreate = NULL; |
|
fontParams.renderUpdate = NULL; |
|
fontParams.renderDraw = NULL; |
|
fontParams.renderDelete = NULL; |
|
fontParams.userPtr = NULL; |
|
ctx->fs = fonsCreateInternal(&fontParams); |
|
if (ctx->fs == NULL) goto error; |
|
|
|
// Create font texture |
|
ctx->fontImages[0] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, fontParams.width, fontParams.height, 0, NULL); |
|
if (ctx->fontImages[0] == 0) goto error; |
|
ctx->fontImageIdx = 0; |
|
|
|
return ctx; |
|
|
|
error: |
|
nvgDeleteInternal(ctx); |
|
return 0; |
|
} |
|
|
|
NVGparams* nvgInternalParams(NVGcontext* ctx) |
|
{ |
|
return &ctx->params; |
|
} |
|
|
|
void nvgDeleteInternal(NVGcontext* ctx) |
|
{ |
|
int i; |
|
if (ctx == NULL) return; |
|
if (ctx->commands != NULL) free(ctx->commands); |
|
if (ctx->cache != NULL) nvg__deletePathCache(ctx->cache); |
|
|
|
if (ctx->fs) |
|
fonsDeleteInternal(ctx->fs); |
|
|
|
for (i = 0; i < NVG_MAX_FONTIMAGES; i++) { |
|
if (ctx->fontImages[i] != 0) { |
|
nvgDeleteImage(ctx, ctx->fontImages[i]); |
|
ctx->fontImages[i] = 0; |
|
} |
|
} |
|
|
|
if (ctx->params.renderDelete != NULL) |
|
ctx->params.renderDelete(ctx->params.userPtr); |
|
|
|
free(ctx); |
|
} |
|
|
|
void nvgBeginFrame(NVGcontext* ctx, int windowWidth, int windowHeight, float devicePixelRatio) |
|
{ |
|
/* printf("Tris: draws:%d fill:%d stroke:%d text:%d TOT:%d\n", |
|
ctx->drawCallCount, ctx->fillTriCount, ctx->strokeTriCount, ctx->textTriCount, |
|
ctx->fillTriCount+ctx->strokeTriCount+ctx->textTriCount);*/ |
|
|
|
ctx->nstates = 0; |
|
nvgSave(ctx); |
|
nvgReset(ctx); |
|
|
|
nvg__setDevicePixelRatio(ctx, devicePixelRatio); |
|
|
|
ctx->params.renderViewport(ctx->params.userPtr, windowWidth, windowHeight, devicePixelRatio); |
|
|
|
ctx->drawCallCount = 0; |
|
ctx->fillTriCount = 0; |
|
ctx->strokeTriCount = 0; |
|
ctx->textTriCount = 0; |
|
} |
|
|
|
void nvgCancelFrame(NVGcontext* ctx) |
|
{ |
|
ctx->params.renderCancel(ctx->params.userPtr); |
|
} |
|
|
|
void nvgEndFrame(NVGcontext* ctx) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
ctx->params.renderFlush(ctx->params.userPtr); |
|
if (ctx->fontImageIdx != 0) { |
|
int fontImage = ctx->fontImages[ctx->fontImageIdx]; |
|
int i, j, iw, ih; |
|
// delete images that smaller than current one |
|
if (fontImage == 0) |
|
return; |
|
nvgImageSize(ctx, fontImage, &iw, &ih); |
|
for (i = j = 0; i < ctx->fontImageIdx; i++) { |
|
if (ctx->fontImages[i] != 0) { |
|
int nw, nh; |
|
nvgImageSize(ctx, ctx->fontImages[i], &nw, &nh); |
|
if (nw < iw || nh < ih) |
|
nvgDeleteImage(ctx, ctx->fontImages[i]); |
|
else |
|
ctx->fontImages[j++] = ctx->fontImages[i]; |
|
} |
|
} |
|
// make current font image to first |
|
ctx->fontImages[j++] = ctx->fontImages[0]; |
|
ctx->fontImages[0] = fontImage; |
|
ctx->fontImageIdx = 0; |
|
// clear all images after j |
|
for (i = j; i < NVG_MAX_FONTIMAGES; i++) |
|
ctx->fontImages[i] = 0; |
|
} |
|
} |
|
|
|
NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b) |
|
{ |
|
return nvgRGBA(r,g,b,255); |
|
} |
|
|
|
NVGcolor nvgRGBf(float r, float g, float b) |
|
{ |
|
return nvgRGBAf(r,g,b,1.0f); |
|
} |
|
|
|
NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) |
|
{ |
|
NVGcolor color; |
|
// Use longer initialization to suppress warning. |
|
color.r = r / 255.0f; |
|
color.g = g / 255.0f; |
|
color.b = b / 255.0f; |
|
color.a = a / 255.0f; |
|
return color; |
|
} |
|
|
|
NVGcolor nvgRGBAf(float r, float g, float b, float a) |
|
{ |
|
NVGcolor color; |
|
// Use longer initialization to suppress warning. |
|
color.r = r; |
|
color.g = g; |
|
color.b = b; |
|
color.a = a; |
|
return color; |
|
} |
|
|
|
NVGcolor nvgTransRGBA(NVGcolor c, unsigned char a) |
|
{ |
|
c.a = a / 255.0f; |
|
return c; |
|
} |
|
|
|
NVGcolor nvgTransRGBAf(NVGcolor c, float a) |
|
{ |
|
c.a = a; |
|
return c; |
|
} |
|
|
|
NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u) |
|
{ |
|
int i; |
|
float oneminu; |
|
NVGcolor cint = {{{0}}}; |
|
|
|
u = nvg__clampf(u, 0.0f, 1.0f); |
|
oneminu = 1.0f - u; |
|
for( i = 0; i <4; i++ ) |
|
{ |
|
cint.rgba[i] = c0.rgba[i] * oneminu + c1.rgba[i] * u; |
|
} |
|
|
|
return cint; |
|
} |
|
|
|
NVGcolor nvgHSL(float h, float s, float l) |
|
{ |
|
return nvgHSLA(h,s,l,255); |
|
} |
|
|
|
static float nvg__hue(float h, float m1, float m2) |
|
{ |
|
if (h < 0) h += 1; |
|
if (h > 1) h -= 1; |
|
if (h < 1.0f/6.0f) |
|
return m1 + (m2 - m1) * h * 6.0f; |
|
else if (h < 3.0f/6.0f) |
|
return m2; |
|
else if (h < 4.0f/6.0f) |
|
return m1 + (m2 - m1) * (2.0f/3.0f - h) * 6.0f; |
|
return m1; |
|
} |
|
|
|
NVGcolor nvgHSLA(float h, float s, float l, unsigned char a) |
|
{ |
|
float m1, m2; |
|
NVGcolor col; |
|
h = nvg__modf(h, 1.0f); |
|
if (h < 0.0f) h += 1.0f; |
|
s = nvg__clampf(s, 0.0f, 1.0f); |
|
l = nvg__clampf(l, 0.0f, 1.0f); |
|
m2 = l <= 0.5f ? (l * (1 + s)) : (l + s - l * s); |
|
m1 = 2 * l - m2; |
|
col.r = nvg__clampf(nvg__hue(h + 1.0f/3.0f, m1, m2), 0.0f, 1.0f); |
|
col.g = nvg__clampf(nvg__hue(h, m1, m2), 0.0f, 1.0f); |
|
col.b = nvg__clampf(nvg__hue(h - 1.0f/3.0f, m1, m2), 0.0f, 1.0f); |
|
col.a = a/255.0f; |
|
return col; |
|
} |
|
|
|
void nvgTransformIdentity(float* t) |
|
{ |
|
t[0] = 1.0f; t[1] = 0.0f; |
|
t[2] = 0.0f; t[3] = 1.0f; |
|
t[4] = 0.0f; t[5] = 0.0f; |
|
} |
|
|
|
void nvgTransformTranslate(float* t, float tx, float ty) |
|
{ |
|
t[0] = 1.0f; t[1] = 0.0f; |
|
t[2] = 0.0f; t[3] = 1.0f; |
|
t[4] = tx; t[5] = ty; |
|
} |
|
|
|
void nvgTransformScale(float* t, float sx, float sy) |
|
{ |
|
t[0] = sx; t[1] = 0.0f; |
|
t[2] = 0.0f; t[3] = sy; |
|
t[4] = 0.0f; t[5] = 0.0f; |
|
} |
|
|
|
void nvgTransformRotate(float* t, float a) |
|
{ |
|
float cs = nvg__cosf(a), sn = nvg__sinf(a); |
|
t[0] = cs; t[1] = sn; |
|
t[2] = -sn; t[3] = cs; |
|
t[4] = 0.0f; t[5] = 0.0f; |
|
} |
|
|
|
void nvgTransformSkewX(float* t, float a) |
|
{ |
|
t[0] = 1.0f; t[1] = 0.0f; |
|
t[2] = nvg__tanf(a); t[3] = 1.0f; |
|
t[4] = 0.0f; t[5] = 0.0f; |
|
} |
|
|
|
void nvgTransformSkewY(float* t, float a) |
|
{ |
|
t[0] = 1.0f; t[1] = nvg__tanf(a); |
|
t[2] = 0.0f; t[3] = 1.0f; |
|
t[4] = 0.0f; t[5] = 0.0f; |
|
} |
|
|
|
void nvgTransformMultiply(float* t, const float* s) |
|
{ |
|
float t0 = t[0] * s[0] + t[1] * s[2]; |
|
float t2 = t[2] * s[0] + t[3] * s[2]; |
|
float t4 = t[4] * s[0] + t[5] * s[2] + s[4]; |
|
t[1] = t[0] * s[1] + t[1] * s[3]; |
|
t[3] = t[2] * s[1] + t[3] * s[3]; |
|
t[5] = t[4] * s[1] + t[5] * s[3] + s[5]; |
|
t[0] = t0; |
|
t[2] = t2; |
|
t[4] = t4; |
|
} |
|
|
|
void nvgTransformPremultiply(float* t, const float* s) |
|
{ |
|
float s2[6]; |
|
memcpy(s2, s, sizeof(float)*6); |
|
nvgTransformMultiply(s2, t); |
|
memcpy(t, s2, sizeof(float)*6); |
|
} |
|
|
|
int nvgTransformInverse(float* inv, const float* t) |
|
{ |
|
double invdet, det = (double)t[0] * t[3] - (double)t[2] * t[1]; |
|
if (det > -1e-6 && det < 1e-6) { |
|
nvgTransformIdentity(inv); |
|
return 0; |
|
} |
|
invdet = 1.0 / det; |
|
inv[0] = (float)(t[3] * invdet); |
|
inv[2] = (float)(-t[2] * invdet); |
|
inv[4] = (float)(((double)t[2] * t[5] - (double)t[3] * t[4]) * invdet); |
|
inv[1] = (float)(-t[1] * invdet); |
|
inv[3] = (float)(t[0] * invdet); |
|
inv[5] = (float)(((double)t[1] * t[4] - (double)t[0] * t[5]) * invdet); |
|
return 1; |
|
} |
|
|
|
void nvgTransformPoint(float* dx, float* dy, const float* t, float sx, float sy) |
|
{ |
|
*dx = sx*t[0] + sy*t[2] + t[4]; |
|
*dy = sx*t[1] + sy*t[3] + t[5]; |
|
} |
|
|
|
float nvgDegToRad(float deg) |
|
{ |
|
return deg / 180.0f * NVG_PI; |
|
} |
|
|
|
float nvgRadToDeg(float rad) |
|
{ |
|
return rad / NVG_PI * 180.0f; |
|
} |
|
|
|
static void nvg__setPaintColor(NVGpaint* p, NVGcolor color) |
|
{ |
|
memset(p, 0, sizeof(*p)); |
|
nvgTransformIdentity(p->xform); |
|
p->radius = 0.0f; |
|
p->feather = 1.0f; |
|
p->innerColor = color; |
|
p->outerColor = color; |
|
} |
|
|
|
|
|
// State handling |
|
void nvgSave(NVGcontext* ctx) |
|
{ |
|
if (ctx->nstates >= NVG_MAX_STATES) |
|
return; |
|
if (ctx->nstates > 0) |
|
memcpy(&ctx->states[ctx->nstates], &ctx->states[ctx->nstates-1], sizeof(NVGstate)); |
|
ctx->nstates++; |
|
} |
|
|
|
void nvgRestore(NVGcontext* ctx) |
|
{ |
|
if (ctx->nstates <= 1) |
|
return; |
|
ctx->nstates--; |
|
} |
|
|
|
void nvgReset(NVGcontext* ctx) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
memset(state, 0, sizeof(*state)); |
|
|
|
nvg__setPaintColor(&state->fill, nvgRGBA(255,255,255,255)); |
|
nvg__setPaintColor(&state->stroke, nvgRGBA(0,0,0,255)); |
|
state->compositeOperation = nvg__compositeOperationState(NVG_SOURCE_OVER); |
|
state->shapeAntiAlias = 1; |
|
state->strokeWidth = 1.0f; |
|
state->miterLimit = 10.0f; |
|
state->lineCap = NVG_BUTT; |
|
state->lineJoin = NVG_MITER; |
|
state->alpha = 1.0f; |
|
nvgTransformIdentity(state->xform); |
|
|
|
state->scissor.extent[0] = -1.0f; |
|
state->scissor.extent[1] = -1.0f; |
|
|
|
state->fontSize = 16.0f; |
|
state->letterSpacing = 0.0f; |
|
state->lineHeight = 1.0f; |
|
state->fontBlur = 0.0f; |
|
state->textAlign = NVG_ALIGN_LEFT | NVG_ALIGN_BASELINE; |
|
state->fontId = 0; |
|
} |
|
|
|
// State setting |
|
void nvgShapeAntiAlias(NVGcontext* ctx, int enabled) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->shapeAntiAlias = enabled; |
|
} |
|
|
|
void nvgStrokeWidth(NVGcontext* ctx, float width) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->strokeWidth = width; |
|
} |
|
|
|
void nvgMiterLimit(NVGcontext* ctx, float limit) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->miterLimit = limit; |
|
} |
|
|
|
void nvgLineCap(NVGcontext* ctx, int cap) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->lineCap = cap; |
|
} |
|
|
|
void nvgLineJoin(NVGcontext* ctx, int join) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->lineJoin = join; |
|
} |
|
|
|
void nvgGlobalAlpha(NVGcontext* ctx, float alpha) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->alpha = alpha; |
|
} |
|
|
|
void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float t[6] = { a, b, c, d, e, f }; |
|
nvgTransformPremultiply(state->xform, t); |
|
} |
|
|
|
void nvgResetTransform(NVGcontext* ctx) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
nvgTransformIdentity(state->xform); |
|
} |
|
|
|
void nvgTranslate(NVGcontext* ctx, float x, float y) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float t[6]; |
|
nvgTransformTranslate(t, x,y); |
|
nvgTransformPremultiply(state->xform, t); |
|
} |
|
|
|
void nvgRotate(NVGcontext* ctx, float angle) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float t[6]; |
|
nvgTransformRotate(t, angle); |
|
nvgTransformPremultiply(state->xform, t); |
|
} |
|
|
|
void nvgSkewX(NVGcontext* ctx, float angle) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float t[6]; |
|
nvgTransformSkewX(t, angle); |
|
nvgTransformPremultiply(state->xform, t); |
|
} |
|
|
|
void nvgSkewY(NVGcontext* ctx, float angle) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float t[6]; |
|
nvgTransformSkewY(t, angle); |
|
nvgTransformPremultiply(state->xform, t); |
|
} |
|
|
|
void nvgScale(NVGcontext* ctx, float x, float y) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float t[6]; |
|
nvgTransformScale(t, x,y); |
|
nvgTransformPremultiply(state->xform, t); |
|
} |
|
|
|
void nvgCurrentTransform(NVGcontext* ctx, float* xform) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
if (xform == NULL) return; |
|
memcpy(xform, state->xform, sizeof(float)*6); |
|
} |
|
|
|
void nvgStrokeColor(NVGcontext* ctx, NVGcolor color) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
nvg__setPaintColor(&state->stroke, color); |
|
} |
|
|
|
void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->stroke = paint; |
|
nvgTransformMultiply(state->stroke.xform, state->xform); |
|
} |
|
|
|
void nvgFillColor(NVGcontext* ctx, NVGcolor color) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
nvg__setPaintColor(&state->fill, color); |
|
} |
|
|
|
void nvgFillPaint(NVGcontext* ctx, NVGpaint paint) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->fill = paint; |
|
nvgTransformMultiply(state->fill.xform, state->xform); |
|
} |
|
|
|
int nvgCreateImage(NVGcontext* ctx, const char* filename, int imageFlags) |
|
{ |
|
int w, h, n, image; |
|
unsigned char* img; |
|
stbi_set_unpremultiply_on_load(1); |
|
stbi_convert_iphone_png_to_rgb(1); |
|
img = stbi_load(filename, &w, &h, &n, 4); |
|
if (img == NULL) { |
|
// printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); |
|
return 0; |
|
} |
|
image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); |
|
stbi_image_free(img); |
|
return image; |
|
} |
|
|
|
int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, unsigned char* data, int ndata) |
|
{ |
|
int w, h, n, image; |
|
unsigned char* img = stbi_load_from_memory(data, ndata, &w, &h, &n, 4); |
|
if (img == NULL) { |
|
// printf("Failed to load %s - %s\n", filename, stbi_failure_reason()); |
|
return 0; |
|
} |
|
image = nvgCreateImageRGBA(ctx, w, h, imageFlags, img); |
|
stbi_image_free(img); |
|
return image; |
|
} |
|
|
|
int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const unsigned char* data) |
|
{ |
|
return ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_RGBA, w, h, imageFlags, data); |
|
} |
|
|
|
void nvgUpdateImage(NVGcontext* ctx, int image, const unsigned char* data) |
|
{ |
|
int w, h; |
|
ctx->params.renderGetTextureSize(ctx->params.userPtr, image, &w, &h); |
|
ctx->params.renderUpdateTexture(ctx->params.userPtr, image, 0,0, w,h, data); |
|
} |
|
|
|
void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h) |
|
{ |
|
ctx->params.renderGetTextureSize(ctx->params.userPtr, image, w, h); |
|
} |
|
|
|
void nvgDeleteImage(NVGcontext* ctx, int image) |
|
{ |
|
ctx->params.renderDeleteTexture(ctx->params.userPtr, image); |
|
} |
|
|
|
NVGpaint nvgLinearGradient(NVGcontext* ctx, |
|
float sx, float sy, float ex, float ey, |
|
NVGcolor icol, NVGcolor ocol) |
|
{ |
|
NVGpaint p; |
|
float dx, dy, d; |
|
const float large = 1e5; |
|
NVG_NOTUSED(ctx); |
|
memset(&p, 0, sizeof(p)); |
|
|
|
// Calculate transform aligned to the line |
|
dx = ex - sx; |
|
dy = ey - sy; |
|
d = sqrtf(dx*dx + dy*dy); |
|
if (d > 0.0001f) { |
|
dx /= d; |
|
dy /= d; |
|
} else { |
|
dx = 0; |
|
dy = 1; |
|
} |
|
|
|
p.xform[0] = dy; p.xform[1] = -dx; |
|
p.xform[2] = dx; p.xform[3] = dy; |
|
p.xform[4] = sx - dx*large; p.xform[5] = sy - dy*large; |
|
|
|
p.extent[0] = large; |
|
p.extent[1] = large + d*0.5f; |
|
|
|
p.radius = 0.0f; |
|
|
|
p.feather = nvg__maxf(1.0f, d); |
|
|
|
p.innerColor = icol; |
|
p.outerColor = ocol; |
|
|
|
return p; |
|
} |
|
|
|
NVGpaint nvgRadialGradient(NVGcontext* ctx, |
|
float cx, float cy, float inr, float outr, |
|
NVGcolor icol, NVGcolor ocol) |
|
{ |
|
NVGpaint p; |
|
float r = (inr+outr)*0.5f; |
|
float f = (outr-inr); |
|
NVG_NOTUSED(ctx); |
|
memset(&p, 0, sizeof(p)); |
|
|
|
nvgTransformIdentity(p.xform); |
|
p.xform[4] = cx; |
|
p.xform[5] = cy; |
|
|
|
p.extent[0] = r; |
|
p.extent[1] = r; |
|
|
|
p.radius = r; |
|
|
|
p.feather = nvg__maxf(1.0f, f); |
|
|
|
p.innerColor = icol; |
|
p.outerColor = ocol; |
|
|
|
return p; |
|
} |
|
|
|
NVGpaint nvgBoxGradient(NVGcontext* ctx, |
|
float x, float y, float w, float h, float r, float f, |
|
NVGcolor icol, NVGcolor ocol) |
|
{ |
|
NVGpaint p; |
|
NVG_NOTUSED(ctx); |
|
memset(&p, 0, sizeof(p)); |
|
|
|
nvgTransformIdentity(p.xform); |
|
p.xform[4] = x+w*0.5f; |
|
p.xform[5] = y+h*0.5f; |
|
|
|
p.extent[0] = w*0.5f; |
|
p.extent[1] = h*0.5f; |
|
|
|
p.radius = r; |
|
|
|
p.feather = nvg__maxf(1.0f, f); |
|
|
|
p.innerColor = icol; |
|
p.outerColor = ocol; |
|
|
|
return p; |
|
} |
|
|
|
|
|
NVGpaint nvgImagePattern(NVGcontext* ctx, |
|
float cx, float cy, float w, float h, float angle, |
|
int image, float alpha) |
|
{ |
|
NVGpaint p; |
|
NVG_NOTUSED(ctx); |
|
memset(&p, 0, sizeof(p)); |
|
|
|
nvgTransformRotate(p.xform, angle); |
|
p.xform[4] = cx; |
|
p.xform[5] = cy; |
|
|
|
p.extent[0] = w; |
|
p.extent[1] = h; |
|
|
|
p.image = image; |
|
|
|
p.innerColor = p.outerColor = nvgRGBAf(1,1,1,alpha); |
|
|
|
return p; |
|
} |
|
|
|
// Scissoring |
|
void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
|
|
w = nvg__maxf(0.0f, w); |
|
h = nvg__maxf(0.0f, h); |
|
|
|
nvgTransformIdentity(state->scissor.xform); |
|
state->scissor.xform[4] = x+w*0.5f; |
|
state->scissor.xform[5] = y+h*0.5f; |
|
nvgTransformMultiply(state->scissor.xform, state->xform); |
|
|
|
state->scissor.extent[0] = w*0.5f; |
|
state->scissor.extent[1] = h*0.5f; |
|
} |
|
|
|
static void nvg__isectRects(float* dst, |
|
float ax, float ay, float aw, float ah, |
|
float bx, float by, float bw, float bh) |
|
{ |
|
float minx = nvg__maxf(ax, bx); |
|
float miny = nvg__maxf(ay, by); |
|
float maxx = nvg__minf(ax+aw, bx+bw); |
|
float maxy = nvg__minf(ay+ah, by+bh); |
|
dst[0] = minx; |
|
dst[1] = miny; |
|
dst[2] = nvg__maxf(0.0f, maxx - minx); |
|
dst[3] = nvg__maxf(0.0f, maxy - miny); |
|
} |
|
|
|
void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float pxform[6], invxorm[6]; |
|
float rect[4]; |
|
float ex, ey, tex, tey; |
|
|
|
// If no previous scissor has been set, set the scissor as current scissor. |
|
if (state->scissor.extent[0] < 0) { |
|
nvgScissor(ctx, x, y, w, h); |
|
return; |
|
} |
|
|
|
// Transform the current scissor rect into current transform space. |
|
// If there is difference in rotation, this will be approximation. |
|
memcpy(pxform, state->scissor.xform, sizeof(float)*6); |
|
ex = state->scissor.extent[0]; |
|
ey = state->scissor.extent[1]; |
|
nvgTransformInverse(invxorm, state->xform); |
|
nvgTransformMultiply(pxform, invxorm); |
|
tex = ex*nvg__absf(pxform[0]) + ey*nvg__absf(pxform[2]); |
|
tey = ex*nvg__absf(pxform[1]) + ey*nvg__absf(pxform[3]); |
|
|
|
// Intersect rects. |
|
nvg__isectRects(rect, pxform[4]-tex,pxform[5]-tey,tex*2,tey*2, x,y,w,h); |
|
|
|
nvgScissor(ctx, rect[0], rect[1], rect[2], rect[3]); |
|
} |
|
|
|
void nvgResetScissor(NVGcontext* ctx) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
memset(state->scissor.xform, 0, sizeof(state->scissor.xform)); |
|
state->scissor.extent[0] = -1.0f; |
|
state->scissor.extent[1] = -1.0f; |
|
} |
|
|
|
// Global composite operation. |
|
void nvgGlobalCompositeOperation(NVGcontext* ctx, int op) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->compositeOperation = nvg__compositeOperationState(op); |
|
} |
|
|
|
void nvgGlobalCompositeBlendFunc(NVGcontext* ctx, int sfactor, int dfactor) |
|
{ |
|
nvgGlobalCompositeBlendFuncSeparate(ctx, sfactor, dfactor, sfactor, dfactor); |
|
} |
|
|
|
void nvgGlobalCompositeBlendFuncSeparate(NVGcontext* ctx, int srcRGB, int dstRGB, int srcAlpha, int dstAlpha) |
|
{ |
|
NVGcompositeOperationState op; |
|
op.srcRGB = srcRGB; |
|
op.dstRGB = dstRGB; |
|
op.srcAlpha = srcAlpha; |
|
op.dstAlpha = dstAlpha; |
|
|
|
NVGstate* state = nvg__getState(ctx); |
|
state->compositeOperation = op; |
|
} |
|
|
|
static int nvg__ptEquals(float x1, float y1, float x2, float y2, float tol) |
|
{ |
|
float dx = x2 - x1; |
|
float dy = y2 - y1; |
|
return dx*dx + dy*dy < tol*tol; |
|
} |
|
|
|
static float nvg__distPtSeg(float x, float y, float px, float py, float qx, float qy) |
|
{ |
|
float pqx, pqy, dx, dy, d, t; |
|
pqx = qx-px; |
|
pqy = qy-py; |
|
dx = x-px; |
|
dy = y-py; |
|
d = pqx*pqx + pqy*pqy; |
|
t = pqx*dx + pqy*dy; |
|
if (d > 0) t /= d; |
|
if (t < 0) t = 0; |
|
else if (t > 1) t = 1; |
|
dx = px + t*pqx - x; |
|
dy = py + t*pqy - y; |
|
return dx*dx + dy*dy; |
|
} |
|
|
|
static void nvg__appendCommands(NVGcontext* ctx, float* vals, int nvals) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
int i; |
|
|
|
if (ctx->ncommands+nvals > ctx->ccommands) { |
|
float* commands; |
|
int ccommands = ctx->ncommands+nvals + ctx->ccommands/2; |
|
commands = (float*)realloc(ctx->commands, sizeof(float)*ccommands); |
|
if (commands == NULL) return; |
|
ctx->commands = commands; |
|
ctx->ccommands = ccommands; |
|
} |
|
|
|
if ((int)vals[0] != NVG_CLOSE && (int)vals[0] != NVG_WINDING) { |
|
ctx->commandx = vals[nvals-2]; |
|
ctx->commandy = vals[nvals-1]; |
|
} |
|
|
|
// transform commands |
|
i = 0; |
|
while (i < nvals) { |
|
int cmd = (int)vals[i]; |
|
switch (cmd) { |
|
case NVG_MOVETO: |
|
nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); |
|
i += 3; |
|
break; |
|
case NVG_LINETO: |
|
nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); |
|
i += 3; |
|
break; |
|
case NVG_BEZIERTO: |
|
nvgTransformPoint(&vals[i+1],&vals[i+2], state->xform, vals[i+1],vals[i+2]); |
|
nvgTransformPoint(&vals[i+3],&vals[i+4], state->xform, vals[i+3],vals[i+4]); |
|
nvgTransformPoint(&vals[i+5],&vals[i+6], state->xform, vals[i+5],vals[i+6]); |
|
i += 7; |
|
break; |
|
case NVG_CLOSE: |
|
i++; |
|
break; |
|
case NVG_WINDING: |
|
i += 2; |
|
break; |
|
default: |
|
i++; |
|
} |
|
} |
|
|
|
memcpy(&ctx->commands[ctx->ncommands], vals, nvals*sizeof(float)); |
|
|
|
ctx->ncommands += nvals; |
|
} |
|
|
|
|
|
static void nvg__clearPathCache(NVGcontext* ctx) |
|
{ |
|
ctx->cache->npoints = 0; |
|
ctx->cache->npaths = 0; |
|
} |
|
|
|
static NVGpath* nvg__lastPath(NVGcontext* ctx) |
|
{ |
|
if (ctx->cache->npaths > 0) |
|
return &ctx->cache->paths[ctx->cache->npaths-1]; |
|
return NULL; |
|
} |
|
|
|
static void nvg__addPath(NVGcontext* ctx) |
|
{ |
|
NVGpath* path; |
|
if (ctx->cache->npaths+1 > ctx->cache->cpaths) { |
|
NVGpath* paths; |
|
int cpaths = ctx->cache->npaths+1 + ctx->cache->cpaths/2; |
|
paths = (NVGpath*)realloc(ctx->cache->paths, sizeof(NVGpath)*cpaths); |
|
if (paths == NULL) return; |
|
ctx->cache->paths = paths; |
|
ctx->cache->cpaths = cpaths; |
|
} |
|
path = &ctx->cache->paths[ctx->cache->npaths]; |
|
memset(path, 0, sizeof(*path)); |
|
path->first = ctx->cache->npoints; |
|
path->winding = NVG_CCW; |
|
|
|
ctx->cache->npaths++; |
|
} |
|
|
|
static NVGpoint* nvg__lastPoint(NVGcontext* ctx) |
|
{ |
|
if (ctx->cache->npoints > 0) |
|
return &ctx->cache->points[ctx->cache->npoints-1]; |
|
return NULL; |
|
} |
|
|
|
static void nvg__addPoint(NVGcontext* ctx, float x, float y, int flags) |
|
{ |
|
NVGpath* path = nvg__lastPath(ctx); |
|
NVGpoint* pt; |
|
if (path == NULL) return; |
|
|
|
if (path->count > 0 && ctx->cache->npoints > 0) { |
|
pt = nvg__lastPoint(ctx); |
|
if (nvg__ptEquals(pt->x,pt->y, x,y, ctx->distTol)) { |
|
pt->flags |= flags; |
|
return; |
|
} |
|
} |
|
|
|
if (ctx->cache->npoints+1 > ctx->cache->cpoints) { |
|
NVGpoint* points; |
|
int cpoints = ctx->cache->npoints+1 + ctx->cache->cpoints/2; |
|
points = (NVGpoint*)realloc(ctx->cache->points, sizeof(NVGpoint)*cpoints); |
|
if (points == NULL) return; |
|
ctx->cache->points = points; |
|
ctx->cache->cpoints = cpoints; |
|
} |
|
|
|
pt = &ctx->cache->points[ctx->cache->npoints]; |
|
memset(pt, 0, sizeof(*pt)); |
|
pt->x = x; |
|
pt->y = y; |
|
pt->flags = (unsigned char)flags; |
|
|
|
ctx->cache->npoints++; |
|
path->count++; |
|
} |
|
|
|
static void nvg__closePath(NVGcontext* ctx) |
|
{ |
|
NVGpath* path = nvg__lastPath(ctx); |
|
if (path == NULL) return; |
|
path->closed = 1; |
|
} |
|
|
|
static void nvg__pathWinding(NVGcontext* ctx, int winding) |
|
{ |
|
NVGpath* path = nvg__lastPath(ctx); |
|
if (path == NULL) return; |
|
path->winding = winding; |
|
} |
|
|
|
static float nvg__getAverageScale(float *t) |
|
{ |
|
float sx = sqrtf(t[0]*t[0] + t[2]*t[2]); |
|
float sy = sqrtf(t[1]*t[1] + t[3]*t[3]); |
|
return (sx + sy) * 0.5f; |
|
} |
|
|
|
static NVGvertex* nvg__allocTempVerts(NVGcontext* ctx, int nverts) |
|
{ |
|
if (nverts > ctx->cache->cverts) { |
|
NVGvertex* verts; |
|
int cverts = (nverts + 0xff) & ~0xff; // Round up to prevent allocations when things change just slightly. |
|
verts = (NVGvertex*)realloc(ctx->cache->verts, sizeof(NVGvertex)*cverts); |
|
if (verts == NULL) return NULL; |
|
ctx->cache->verts = verts; |
|
ctx->cache->cverts = cverts; |
|
} |
|
|
|
return ctx->cache->verts; |
|
} |
|
|
|
static float nvg__triarea2(float ax, float ay, float bx, float by, float cx, float cy) |
|
{ |
|
float abx = bx - ax; |
|
float aby = by - ay; |
|
float acx = cx - ax; |
|
float acy = cy - ay; |
|
return acx*aby - abx*acy; |
|
} |
|
|
|
static float nvg__polyArea(NVGpoint* pts, int npts) |
|
{ |
|
int i; |
|
float area = 0; |
|
for (i = 2; i < npts; i++) { |
|
NVGpoint* a = &pts[0]; |
|
NVGpoint* b = &pts[i-1]; |
|
NVGpoint* c = &pts[i]; |
|
area += nvg__triarea2(a->x,a->y, b->x,b->y, c->x,c->y); |
|
} |
|
return area * 0.5f; |
|
} |
|
|
|
static void nvg__polyReverse(NVGpoint* pts, int npts) |
|
{ |
|
NVGpoint tmp; |
|
int i = 0, j = npts-1; |
|
while (i < j) { |
|
tmp = pts[i]; |
|
pts[i] = pts[j]; |
|
pts[j] = tmp; |
|
i++; |
|
j--; |
|
} |
|
} |
|
|
|
|
|
static void nvg__vset(NVGvertex* vtx, float x, float y, float u, float v) |
|
{ |
|
vtx->x = x; |
|
vtx->y = y; |
|
vtx->u = u; |
|
vtx->v = v; |
|
} |
|
|
|
static void nvg__tesselateBezier(NVGcontext* ctx, |
|
float x1, float y1, float x2, float y2, |
|
float x3, float y3, float x4, float y4, |
|
int level, int type) |
|
{ |
|
float x12,y12,x23,y23,x34,y34,x123,y123,x234,y234,x1234,y1234; |
|
float dx,dy,d2,d3; |
|
|
|
if (level > 10) return; |
|
|
|
x12 = (x1+x2)*0.5f; |
|
y12 = (y1+y2)*0.5f; |
|
x23 = (x2+x3)*0.5f; |
|
y23 = (y2+y3)*0.5f; |
|
x34 = (x3+x4)*0.5f; |
|
y34 = (y3+y4)*0.5f; |
|
x123 = (x12+x23)*0.5f; |
|
y123 = (y12+y23)*0.5f; |
|
|
|
dx = x4 - x1; |
|
dy = y4 - y1; |
|
d2 = nvg__absf(((x2 - x4) * dy - (y2 - y4) * dx)); |
|
d3 = nvg__absf(((x3 - x4) * dy - (y3 - y4) * dx)); |
|
|
|
if ((d2 + d3)*(d2 + d3) < ctx->tessTol * (dx*dx + dy*dy)) { |
|
nvg__addPoint(ctx, x4, y4, type); |
|
return; |
|
} |
|
|
|
/* if (nvg__absf(x1+x3-x2-x2) + nvg__absf(y1+y3-y2-y2) + nvg__absf(x2+x4-x3-x3) + nvg__absf(y2+y4-y3-y3) < ctx->tessTol) { |
|
nvg__addPoint(ctx, x4, y4, type); |
|
return; |
|
}*/ |
|
|
|
x234 = (x23+x34)*0.5f; |
|
y234 = (y23+y34)*0.5f; |
|
x1234 = (x123+x234)*0.5f; |
|
y1234 = (y123+y234)*0.5f; |
|
|
|
nvg__tesselateBezier(ctx, x1,y1, x12,y12, x123,y123, x1234,y1234, level+1, 0); |
|
nvg__tesselateBezier(ctx, x1234,y1234, x234,y234, x34,y34, x4,y4, level+1, type); |
|
} |
|
|
|
static void nvg__flattenPaths(NVGcontext* ctx) |
|
{ |
|
NVGpathCache* cache = ctx->cache; |
|
// NVGstate* state = nvg__getState(ctx); |
|
NVGpoint* last; |
|
NVGpoint* p0; |
|
NVGpoint* p1; |
|
NVGpoint* pts; |
|
NVGpath* path; |
|
int i, j; |
|
float* cp1; |
|
float* cp2; |
|
float* p; |
|
float area; |
|
|
|
if (cache->npaths > 0) |
|
return; |
|
|
|
// Flatten |
|
i = 0; |
|
while (i < ctx->ncommands) { |
|
int cmd = (int)ctx->commands[i]; |
|
switch (cmd) { |
|
case NVG_MOVETO: |
|
nvg__addPath(ctx); |
|
p = &ctx->commands[i+1]; |
|
nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); |
|
i += 3; |
|
break; |
|
case NVG_LINETO: |
|
p = &ctx->commands[i+1]; |
|
nvg__addPoint(ctx, p[0], p[1], NVG_PT_CORNER); |
|
i += 3; |
|
break; |
|
case NVG_BEZIERTO: |
|
last = nvg__lastPoint(ctx); |
|
if (last != NULL) { |
|
cp1 = &ctx->commands[i+1]; |
|
cp2 = &ctx->commands[i+3]; |
|
p = &ctx->commands[i+5]; |
|
nvg__tesselateBezier(ctx, last->x,last->y, cp1[0],cp1[1], cp2[0],cp2[1], p[0],p[1], 0, NVG_PT_CORNER); |
|
} |
|
i += 7; |
|
break; |
|
case NVG_CLOSE: |
|
nvg__closePath(ctx); |
|
i++; |
|
break; |
|
case NVG_WINDING: |
|
nvg__pathWinding(ctx, (int)ctx->commands[i+1]); |
|
i += 2; |
|
break; |
|
default: |
|
i++; |
|
} |
|
} |
|
|
|
cache->bounds[0] = cache->bounds[1] = 1e6f; |
|
cache->bounds[2] = cache->bounds[3] = -1e6f; |
|
|
|
// Calculate the direction and length of line segments. |
|
for (j = 0; j < cache->npaths; j++) { |
|
path = &cache->paths[j]; |
|
pts = &cache->points[path->first]; |
|
|
|
// If the first and last points are the same, remove the last, mark as closed path. |
|
p0 = &pts[path->count-1]; |
|
p1 = &pts[0]; |
|
if (nvg__ptEquals(p0->x,p0->y, p1->x,p1->y, ctx->distTol)) { |
|
path->count--; |
|
p0 = &pts[path->count-1]; |
|
path->closed = 1; |
|
} |
|
|
|
// Enforce winding. |
|
if (path->count > 2) { |
|
area = nvg__polyArea(pts, path->count); |
|
if (path->winding == NVG_CCW && area < 0.0f) |
|
nvg__polyReverse(pts, path->count); |
|
if (path->winding == NVG_CW && area > 0.0f) |
|
nvg__polyReverse(pts, path->count); |
|
} |
|
|
|
for(i = 0; i < path->count; i++) { |
|
// Calculate segment direction and length |
|
p0->dx = p1->x - p0->x; |
|
p0->dy = p1->y - p0->y; |
|
p0->len = nvg__normalize(&p0->dx, &p0->dy); |
|
// Update bounds |
|
cache->bounds[0] = nvg__minf(cache->bounds[0], p0->x); |
|
cache->bounds[1] = nvg__minf(cache->bounds[1], p0->y); |
|
cache->bounds[2] = nvg__maxf(cache->bounds[2], p0->x); |
|
cache->bounds[3] = nvg__maxf(cache->bounds[3], p0->y); |
|
// Advance |
|
p0 = p1++; |
|
} |
|
} |
|
} |
|
|
|
static int nvg__curveDivs(float r, float arc, float tol) |
|
{ |
|
float da = acosf(r / (r + tol)) * 2.0f; |
|
return nvg__maxi(2, (int)ceilf(arc / da)); |
|
} |
|
|
|
static void nvg__chooseBevel(int bevel, NVGpoint* p0, NVGpoint* p1, float w, |
|
float* x0, float* y0, float* x1, float* y1) |
|
{ |
|
if (bevel) { |
|
*x0 = p1->x + p0->dy * w; |
|
*y0 = p1->y - p0->dx * w; |
|
*x1 = p1->x + p1->dy * w; |
|
*y1 = p1->y - p1->dx * w; |
|
} else { |
|
*x0 = p1->x + p1->dmx * w; |
|
*y0 = p1->y + p1->dmy * w; |
|
*x1 = p1->x + p1->dmx * w; |
|
*y1 = p1->y + p1->dmy * w; |
|
} |
|
} |
|
|
|
static NVGvertex* nvg__roundJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, |
|
float lw, float rw, float lu, float ru, int ncap, float fringe) |
|
{ |
|
int i, n; |
|
float dlx0 = p0->dy; |
|
float dly0 = -p0->dx; |
|
float dlx1 = p1->dy; |
|
float dly1 = -p1->dx; |
|
NVG_NOTUSED(fringe); |
|
|
|
if (p1->flags & NVG_PT_LEFT) { |
|
float lx0,ly0,lx1,ly1,a0,a1; |
|
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); |
|
a0 = atan2f(-dly0, -dlx0); |
|
a1 = atan2f(-dly1, -dlx1); |
|
if (a1 > a0) a1 -= NVG_PI*2; |
|
|
|
nvg__vset(dst, lx0, ly0, lu,1); dst++; |
|
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
|
|
|
n = nvg__clampi((int)ceilf(((a0 - a1) / NVG_PI) * ncap), 2, ncap); |
|
for (i = 0; i < n; i++) { |
|
float u = i/(float)(n-1); |
|
float a = a0 + u*(a1-a0); |
|
float rx = p1->x + cosf(a) * rw; |
|
float ry = p1->y + sinf(a) * rw; |
|
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
|
nvg__vset(dst, rx, ry, ru,1); dst++; |
|
} |
|
|
|
nvg__vset(dst, lx1, ly1, lu,1); dst++; |
|
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
|
|
|
} else { |
|
float rx0,ry0,rx1,ry1,a0,a1; |
|
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); |
|
a0 = atan2f(dly0, dlx0); |
|
a1 = atan2f(dly1, dlx1); |
|
if (a1 < a0) a1 += NVG_PI*2; |
|
|
|
nvg__vset(dst, p1->x + dlx0*rw, p1->y + dly0*rw, lu,1); dst++; |
|
nvg__vset(dst, rx0, ry0, ru,1); dst++; |
|
|
|
n = nvg__clampi((int)ceilf(((a1 - a0) / NVG_PI) * ncap), 2, ncap); |
|
for (i = 0; i < n; i++) { |
|
float u = i/(float)(n-1); |
|
float a = a0 + u*(a1-a0); |
|
float lx = p1->x + cosf(a) * lw; |
|
float ly = p1->y + sinf(a) * lw; |
|
nvg__vset(dst, lx, ly, lu,1); dst++; |
|
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
|
} |
|
|
|
nvg__vset(dst, p1->x + dlx1*rw, p1->y + dly1*rw, lu,1); dst++; |
|
nvg__vset(dst, rx1, ry1, ru,1); dst++; |
|
|
|
} |
|
return dst; |
|
} |
|
|
|
static NVGvertex* nvg__bevelJoin(NVGvertex* dst, NVGpoint* p0, NVGpoint* p1, |
|
float lw, float rw, float lu, float ru, float fringe) |
|
{ |
|
float rx0,ry0,rx1,ry1; |
|
float lx0,ly0,lx1,ly1; |
|
float dlx0 = p0->dy; |
|
float dly0 = -p0->dx; |
|
float dlx1 = p1->dy; |
|
float dly1 = -p1->dx; |
|
NVG_NOTUSED(fringe); |
|
|
|
if (p1->flags & NVG_PT_LEFT) { |
|
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, lw, &lx0,&ly0, &lx1,&ly1); |
|
|
|
nvg__vset(dst, lx0, ly0, lu,1); dst++; |
|
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
|
|
|
if (p1->flags & NVG_PT_BEVEL) { |
|
nvg__vset(dst, lx0, ly0, lu,1); dst++; |
|
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
|
|
|
nvg__vset(dst, lx1, ly1, lu,1); dst++; |
|
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
|
} else { |
|
rx0 = p1->x - p1->dmx * rw; |
|
ry0 = p1->y - p1->dmy * rw; |
|
|
|
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
|
nvg__vset(dst, p1->x - dlx0*rw, p1->y - dly0*rw, ru,1); dst++; |
|
|
|
nvg__vset(dst, rx0, ry0, ru,1); dst++; |
|
nvg__vset(dst, rx0, ry0, ru,1); dst++; |
|
|
|
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
|
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
|
} |
|
|
|
nvg__vset(dst, lx1, ly1, lu,1); dst++; |
|
nvg__vset(dst, p1->x - dlx1*rw, p1->y - dly1*rw, ru,1); dst++; |
|
|
|
} else { |
|
nvg__chooseBevel(p1->flags & NVG_PR_INNERBEVEL, p0, p1, -rw, &rx0,&ry0, &rx1,&ry1); |
|
|
|
nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; |
|
nvg__vset(dst, rx0, ry0, ru,1); dst++; |
|
|
|
if (p1->flags & NVG_PT_BEVEL) { |
|
nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; |
|
nvg__vset(dst, rx0, ry0, ru,1); dst++; |
|
|
|
nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; |
|
nvg__vset(dst, rx1, ry1, ru,1); dst++; |
|
} else { |
|
lx0 = p1->x + p1->dmx * lw; |
|
ly0 = p1->y + p1->dmy * lw; |
|
|
|
nvg__vset(dst, p1->x + dlx0*lw, p1->y + dly0*lw, lu,1); dst++; |
|
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
|
|
|
nvg__vset(dst, lx0, ly0, lu,1); dst++; |
|
nvg__vset(dst, lx0, ly0, lu,1); dst++; |
|
|
|
nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; |
|
nvg__vset(dst, p1->x, p1->y, 0.5f,1); dst++; |
|
} |
|
|
|
nvg__vset(dst, p1->x + dlx1*lw, p1->y + dly1*lw, lu,1); dst++; |
|
nvg__vset(dst, rx1, ry1, ru,1); dst++; |
|
} |
|
|
|
return dst; |
|
} |
|
|
|
static NVGvertex* nvg__buttCapStart(NVGvertex* dst, NVGpoint* p, |
|
float dx, float dy, float w, float d, float aa) |
|
{ |
|
float px = p->x - dx*d; |
|
float py = p->y - dy*d; |
|
float dlx = dy; |
|
float dly = -dx; |
|
nvg__vset(dst, px + dlx*w - dx*aa, py + dly*w - dy*aa, 0,0); dst++; |
|
nvg__vset(dst, px - dlx*w - dx*aa, py - dly*w - dy*aa, 1,0); dst++; |
|
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++; |
|
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++; |
|
return dst; |
|
} |
|
|
|
static NVGvertex* nvg__buttCapEnd(NVGvertex* dst, NVGpoint* p, |
|
float dx, float dy, float w, float d, float aa) |
|
{ |
|
float px = p->x + dx*d; |
|
float py = p->y + dy*d; |
|
float dlx = dy; |
|
float dly = -dx; |
|
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++; |
|
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++; |
|
nvg__vset(dst, px + dlx*w + dx*aa, py + dly*w + dy*aa, 0,0); dst++; |
|
nvg__vset(dst, px - dlx*w + dx*aa, py - dly*w + dy*aa, 1,0); dst++; |
|
return dst; |
|
} |
|
|
|
|
|
static NVGvertex* nvg__roundCapStart(NVGvertex* dst, NVGpoint* p, |
|
float dx, float dy, float w, int ncap, float aa) |
|
{ |
|
int i; |
|
float px = p->x; |
|
float py = p->y; |
|
float dlx = dy; |
|
float dly = -dx; |
|
NVG_NOTUSED(aa); |
|
for (i = 0; i < ncap; i++) { |
|
float a = i/(float)(ncap-1)*NVG_PI; |
|
float ax = cosf(a) * w, ay = sinf(a) * w; |
|
nvg__vset(dst, px - dlx*ax - dx*ay, py - dly*ax - dy*ay, 0,1); dst++; |
|
nvg__vset(dst, px, py, 0.5f,1); dst++; |
|
} |
|
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++; |
|
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++; |
|
return dst; |
|
} |
|
|
|
static NVGvertex* nvg__roundCapEnd(NVGvertex* dst, NVGpoint* p, |
|
float dx, float dy, float w, int ncap, float aa) |
|
{ |
|
int i; |
|
float px = p->x; |
|
float py = p->y; |
|
float dlx = dy; |
|
float dly = -dx; |
|
NVG_NOTUSED(aa); |
|
nvg__vset(dst, px + dlx*w, py + dly*w, 0,1); dst++; |
|
nvg__vset(dst, px - dlx*w, py - dly*w, 1,1); dst++; |
|
for (i = 0; i < ncap; i++) { |
|
float a = i/(float)(ncap-1)*NVG_PI; |
|
float ax = cosf(a) * w, ay = sinf(a) * w; |
|
nvg__vset(dst, px, py, 0.5f,1); dst++; |
|
nvg__vset(dst, px - dlx*ax + dx*ay, py - dly*ax + dy*ay, 0,1); dst++; |
|
} |
|
return dst; |
|
} |
|
|
|
|
|
static void nvg__calculateJoins(NVGcontext* ctx, float w, int lineJoin, float miterLimit) |
|
{ |
|
NVGpathCache* cache = ctx->cache; |
|
int i, j; |
|
float iw = 0.0f; |
|
|
|
if (w > 0.0f) iw = 1.0f / w; |
|
|
|
// Calculate which joins needs extra vertices to append, and gather vertex count. |
|
for (i = 0; i < cache->npaths; i++) { |
|
NVGpath* path = &cache->paths[i]; |
|
NVGpoint* pts = &cache->points[path->first]; |
|
NVGpoint* p0 = &pts[path->count-1]; |
|
NVGpoint* p1 = &pts[0]; |
|
int nleft = 0; |
|
|
|
path->nbevel = 0; |
|
|
|
for (j = 0; j < path->count; j++) { |
|
float dlx0, dly0, dlx1, dly1, dmr2, cross, limit; |
|
dlx0 = p0->dy; |
|
dly0 = -p0->dx; |
|
dlx1 = p1->dy; |
|
dly1 = -p1->dx; |
|
// Calculate extrusions |
|
p1->dmx = (dlx0 + dlx1) * 0.5f; |
|
p1->dmy = (dly0 + dly1) * 0.5f; |
|
dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy; |
|
if (dmr2 > 0.000001f) { |
|
float scale = 1.0f / dmr2; |
|
if (scale > 600.0f) { |
|
scale = 600.0f; |
|
} |
|
p1->dmx *= scale; |
|
p1->dmy *= scale; |
|
} |
|
|
|
// Clear flags, but keep the corner. |
|
p1->flags = (p1->flags & NVG_PT_CORNER) ? NVG_PT_CORNER : 0; |
|
|
|
// Keep track of left turns. |
|
cross = p1->dx * p0->dy - p0->dx * p1->dy; |
|
if (cross > 0.0f) { |
|
nleft++; |
|
p1->flags |= NVG_PT_LEFT; |
|
} |
|
|
|
// Calculate if we should use bevel or miter for inner join. |
|
limit = nvg__maxf(1.01f, nvg__minf(p0->len, p1->len) * iw); |
|
if ((dmr2 * limit*limit) < 1.0f) |
|
p1->flags |= NVG_PR_INNERBEVEL; |
|
|
|
// Check to see if the corner needs to be beveled. |
|
if (p1->flags & NVG_PT_CORNER) { |
|
if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NVG_BEVEL || lineJoin == NVG_ROUND) { |
|
p1->flags |= NVG_PT_BEVEL; |
|
} |
|
} |
|
|
|
if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) |
|
path->nbevel++; |
|
|
|
p0 = p1++; |
|
} |
|
|
|
path->convex = (nleft == path->count) ? 1 : 0; |
|
} |
|
} |
|
|
|
|
|
static int nvg__expandStroke(NVGcontext* ctx, float w, int lineCap, int lineJoin, float miterLimit) |
|
{ |
|
NVGpathCache* cache = ctx->cache; |
|
NVGvertex* verts; |
|
NVGvertex* dst; |
|
int cverts, i, j; |
|
float aa = ctx->fringeWidth; |
|
int ncap = nvg__curveDivs(w, NVG_PI, ctx->tessTol); // Calculate divisions per half circle. |
|
|
|
nvg__calculateJoins(ctx, w, lineJoin, miterLimit); |
|
|
|
// Calculate max vertex usage. |
|
cverts = 0; |
|
for (i = 0; i < cache->npaths; i++) { |
|
NVGpath* path = &cache->paths[i]; |
|
int loop = (path->closed == 0) ? 0 : 1; |
|
if (lineJoin == NVG_ROUND) |
|
cverts += (path->count + path->nbevel*(ncap+2) + 1) * 2; // plus one for loop |
|
else |
|
cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop |
|
if (loop == 0) { |
|
// space for caps |
|
if (lineCap == NVG_ROUND) { |
|
cverts += (ncap*2 + 2)*2; |
|
} else { |
|
cverts += (3+3)*2; |
|
} |
|
} |
|
} |
|
|
|
verts = nvg__allocTempVerts(ctx, cverts); |
|
if (verts == NULL) return 0; |
|
|
|
for (i = 0; i < cache->npaths; i++) { |
|
NVGpath* path = &cache->paths[i]; |
|
NVGpoint* pts = &cache->points[path->first]; |
|
NVGpoint* p0; |
|
NVGpoint* p1; |
|
int s, e, loop; |
|
float dx, dy; |
|
|
|
path->fill = 0; |
|
path->nfill = 0; |
|
|
|
// Calculate fringe or stroke |
|
loop = (path->closed == 0) ? 0 : 1; |
|
dst = verts; |
|
path->stroke = dst; |
|
|
|
if (loop) { |
|
// Looping |
|
p0 = &pts[path->count-1]; |
|
p1 = &pts[0]; |
|
s = 0; |
|
e = path->count; |
|
} else { |
|
// Add cap |
|
p0 = &pts[0]; |
|
p1 = &pts[1]; |
|
s = 1; |
|
e = path->count-1; |
|
} |
|
|
|
if (loop == 0) { |
|
// Add cap |
|
dx = p1->x - p0->x; |
|
dy = p1->y - p0->y; |
|
nvg__normalize(&dx, &dy); |
|
if (lineCap == NVG_BUTT) |
|
dst = nvg__buttCapStart(dst, p0, dx, dy, w, -aa*0.5f, aa); |
|
else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) |
|
dst = nvg__buttCapStart(dst, p0, dx, dy, w, w-aa, aa); |
|
else if (lineCap == NVG_ROUND) |
|
dst = nvg__roundCapStart(dst, p0, dx, dy, w, ncap, aa); |
|
} |
|
|
|
for (j = s; j < e; ++j) { |
|
if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { |
|
if (lineJoin == NVG_ROUND) { |
|
dst = nvg__roundJoin(dst, p0, p1, w, w, 0, 1, ncap, aa); |
|
} else { |
|
dst = nvg__bevelJoin(dst, p0, p1, w, w, 0, 1, aa); |
|
} |
|
} else { |
|
nvg__vset(dst, p1->x + (p1->dmx * w), p1->y + (p1->dmy * w), 0,1); dst++; |
|
nvg__vset(dst, p1->x - (p1->dmx * w), p1->y - (p1->dmy * w), 1,1); dst++; |
|
} |
|
p0 = p1++; |
|
} |
|
|
|
if (loop) { |
|
// Loop it |
|
nvg__vset(dst, verts[0].x, verts[0].y, 0,1); dst++; |
|
nvg__vset(dst, verts[1].x, verts[1].y, 1,1); dst++; |
|
} else { |
|
// Add cap |
|
dx = p1->x - p0->x; |
|
dy = p1->y - p0->y; |
|
nvg__normalize(&dx, &dy); |
|
if (lineCap == NVG_BUTT) |
|
dst = nvg__buttCapEnd(dst, p1, dx, dy, w, -aa*0.5f, aa); |
|
else if (lineCap == NVG_BUTT || lineCap == NVG_SQUARE) |
|
dst = nvg__buttCapEnd(dst, p1, dx, dy, w, w-aa, aa); |
|
else if (lineCap == NVG_ROUND) |
|
dst = nvg__roundCapEnd(dst, p1, dx, dy, w, ncap, aa); |
|
} |
|
|
|
path->nstroke = (int)(dst - verts); |
|
|
|
verts = dst; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static int nvg__expandFill(NVGcontext* ctx, float w, int lineJoin, float miterLimit) |
|
{ |
|
NVGpathCache* cache = ctx->cache; |
|
NVGvertex* verts; |
|
NVGvertex* dst; |
|
int cverts, convex, i, j; |
|
float aa = ctx->fringeWidth; |
|
int fringe = w > 0.0f; |
|
|
|
nvg__calculateJoins(ctx, w, lineJoin, miterLimit); |
|
|
|
// Calculate max vertex usage. |
|
cverts = 0; |
|
for (i = 0; i < cache->npaths; i++) { |
|
NVGpath* path = &cache->paths[i]; |
|
cverts += path->count + path->nbevel + 1; |
|
if (fringe) |
|
cverts += (path->count + path->nbevel*5 + 1) * 2; // plus one for loop |
|
} |
|
|
|
verts = nvg__allocTempVerts(ctx, cverts); |
|
if (verts == NULL) return 0; |
|
|
|
convex = cache->npaths == 1 && cache->paths[0].convex; |
|
|
|
for (i = 0; i < cache->npaths; i++) { |
|
NVGpath* path = &cache->paths[i]; |
|
NVGpoint* pts = &cache->points[path->first]; |
|
NVGpoint* p0; |
|
NVGpoint* p1; |
|
float rw, lw, woff; |
|
float ru, lu; |
|
|
|
// Calculate shape vertices. |
|
woff = 0.5f*aa; |
|
dst = verts; |
|
path->fill = dst; |
|
|
|
if (fringe) { |
|
// Looping |
|
p0 = &pts[path->count-1]; |
|
p1 = &pts[0]; |
|
for (j = 0; j < path->count; ++j) { |
|
if (p1->flags & NVG_PT_BEVEL) { |
|
float dlx0 = p0->dy; |
|
float dly0 = -p0->dx; |
|
float dlx1 = p1->dy; |
|
float dly1 = -p1->dx; |
|
if (p1->flags & NVG_PT_LEFT) { |
|
float lx = p1->x + p1->dmx * woff; |
|
float ly = p1->y + p1->dmy * woff; |
|
nvg__vset(dst, lx, ly, 0.5f,1); dst++; |
|
} else { |
|
float lx0 = p1->x + dlx0 * woff; |
|
float ly0 = p1->y + dly0 * woff; |
|
float lx1 = p1->x + dlx1 * woff; |
|
float ly1 = p1->y + dly1 * woff; |
|
nvg__vset(dst, lx0, ly0, 0.5f,1); dst++; |
|
nvg__vset(dst, lx1, ly1, 0.5f,1); dst++; |
|
} |
|
} else { |
|
nvg__vset(dst, p1->x + (p1->dmx * woff), p1->y + (p1->dmy * woff), 0.5f,1); dst++; |
|
} |
|
p0 = p1++; |
|
} |
|
} else { |
|
for (j = 0; j < path->count; ++j) { |
|
nvg__vset(dst, pts[j].x, pts[j].y, 0.5f,1); |
|
dst++; |
|
} |
|
} |
|
|
|
path->nfill = (int)(dst - verts); |
|
verts = dst; |
|
|
|
// Calculate fringe |
|
if (fringe) { |
|
lw = w + woff; |
|
rw = w - woff; |
|
lu = 0; |
|
ru = 1; |
|
dst = verts; |
|
path->stroke = dst; |
|
|
|
// Create only half a fringe for convex shapes so that |
|
// the shape can be rendered without stenciling. |
|
if (convex) { |
|
lw = woff; // This should generate the same vertex as fill inset above. |
|
lu = 0.5f; // Set outline fade at middle. |
|
} |
|
|
|
// Looping |
|
p0 = &pts[path->count-1]; |
|
p1 = &pts[0]; |
|
|
|
for (j = 0; j < path->count; ++j) { |
|
if ((p1->flags & (NVG_PT_BEVEL | NVG_PR_INNERBEVEL)) != 0) { |
|
dst = nvg__bevelJoin(dst, p0, p1, lw, rw, lu, ru, ctx->fringeWidth); |
|
} else { |
|
nvg__vset(dst, p1->x + (p1->dmx * lw), p1->y + (p1->dmy * lw), lu,1); dst++; |
|
nvg__vset(dst, p1->x - (p1->dmx * rw), p1->y - (p1->dmy * rw), ru,1); dst++; |
|
} |
|
p0 = p1++; |
|
} |
|
|
|
// Loop it |
|
nvg__vset(dst, verts[0].x, verts[0].y, lu,1); dst++; |
|
nvg__vset(dst, verts[1].x, verts[1].y, ru,1); dst++; |
|
|
|
path->nstroke = (int)(dst - verts); |
|
verts = dst; |
|
} else { |
|
path->stroke = NULL; |
|
path->nstroke = 0; |
|
} |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
|
|
// Draw |
|
void nvgBeginPath(NVGcontext* ctx) |
|
{ |
|
ctx->ncommands = 0; |
|
nvg__clearPathCache(ctx); |
|
} |
|
|
|
void nvgMoveTo(NVGcontext* ctx, float x, float y) |
|
{ |
|
float vals[] = { NVG_MOVETO, x, y }; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgLineTo(NVGcontext* ctx, float x, float y) |
|
{ |
|
float vals[] = { NVG_LINETO, x, y }; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y) |
|
{ |
|
float vals[] = { NVG_BEZIERTO, c1x, c1y, c2x, c2y, x, y }; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y) |
|
{ |
|
float x0 = ctx->commandx; |
|
float y0 = ctx->commandy; |
|
float vals[] = { NVG_BEZIERTO, |
|
x0 + 2.0f/3.0f*(cx - x0), y0 + 2.0f/3.0f*(cy - y0), |
|
x + 2.0f/3.0f*(cx - x), y + 2.0f/3.0f*(cy - y), |
|
x, y }; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius) |
|
{ |
|
float x0 = ctx->commandx; |
|
float y0 = ctx->commandy; |
|
float dx0,dy0, dx1,dy1, a, d, cx,cy, a0,a1; |
|
int dir; |
|
|
|
if (ctx->ncommands == 0) { |
|
return; |
|
} |
|
|
|
// Handle degenerate cases. |
|
if (nvg__ptEquals(x0,y0, x1,y1, ctx->distTol) || |
|
nvg__ptEquals(x1,y1, x2,y2, ctx->distTol) || |
|
nvg__distPtSeg(x1,y1, x0,y0, x2,y2) < ctx->distTol*ctx->distTol || |
|
radius < ctx->distTol) { |
|
nvgLineTo(ctx, x1,y1); |
|
return; |
|
} |
|
|
|
// Calculate tangential circle to lines (x0,y0)-(x1,y1) and (x1,y1)-(x2,y2). |
|
dx0 = x0-x1; |
|
dy0 = y0-y1; |
|
dx1 = x2-x1; |
|
dy1 = y2-y1; |
|
nvg__normalize(&dx0,&dy0); |
|
nvg__normalize(&dx1,&dy1); |
|
a = nvg__acosf(dx0*dx1 + dy0*dy1); |
|
d = radius / nvg__tanf(a/2.0f); |
|
|
|
// printf("a=%f° d=%f\n", a/NVG_PI*180.0f, d); |
|
|
|
if (d > 10000.0f) { |
|
nvgLineTo(ctx, x1,y1); |
|
return; |
|
} |
|
|
|
if (nvg__cross(dx0,dy0, dx1,dy1) > 0.0f) { |
|
cx = x1 + dx0*d + dy0*radius; |
|
cy = y1 + dy0*d + -dx0*radius; |
|
a0 = nvg__atan2f(dx0, -dy0); |
|
a1 = nvg__atan2f(-dx1, dy1); |
|
dir = NVG_CW; |
|
// printf("CW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); |
|
} else { |
|
cx = x1 + dx0*d + -dy0*radius; |
|
cy = y1 + dy0*d + dx0*radius; |
|
a0 = nvg__atan2f(-dx0, dy0); |
|
a1 = nvg__atan2f(dx1, -dy1); |
|
dir = NVG_CCW; |
|
// printf("CCW c=(%f, %f) a0=%f° a1=%f°\n", cx, cy, a0/NVG_PI*180.0f, a1/NVG_PI*180.0f); |
|
} |
|
|
|
nvgArc(ctx, cx, cy, radius, a0, a1, dir); |
|
} |
|
|
|
void nvgClosePath(NVGcontext* ctx) |
|
{ |
|
float vals[] = { NVG_CLOSE }; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgPathWinding(NVGcontext* ctx, int dir) |
|
{ |
|
float vals[] = { NVG_WINDING, (float)dir }; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir) |
|
{ |
|
float a = 0, da = 0, hda = 0, kappa = 0; |
|
float dx = 0, dy = 0, x = 0, y = 0, tanx = 0, tany = 0; |
|
float px = 0, py = 0, ptanx = 0, ptany = 0; |
|
float vals[3 + 5*7 + 100]; |
|
int i, ndivs, nvals; |
|
int move = ctx->ncommands > 0 ? NVG_LINETO : NVG_MOVETO; |
|
|
|
// Clamp angles |
|
da = a1 - a0; |
|
if (dir == NVG_CW) { |
|
if (nvg__absf(da) >= NVG_PI*2) { |
|
da = NVG_PI*2; |
|
} else { |
|
while (da < 0.0f) da += NVG_PI*2; |
|
} |
|
} else { |
|
if (nvg__absf(da) >= NVG_PI*2) { |
|
da = -NVG_PI*2; |
|
} else { |
|
while (da > 0.0f) da -= NVG_PI*2; |
|
} |
|
} |
|
|
|
// Split arc into max 90 degree segments. |
|
ndivs = nvg__maxi(1, nvg__mini((int)(nvg__absf(da) / (NVG_PI*0.5f) + 0.5f), 5)); |
|
hda = (da / (float)ndivs) / 2.0f; |
|
kappa = nvg__absf(4.0f / 3.0f * (1.0f - nvg__cosf(hda)) / nvg__sinf(hda)); |
|
|
|
if (dir == NVG_CCW) |
|
kappa = -kappa; |
|
|
|
nvals = 0; |
|
for (i = 0; i <= ndivs; i++) { |
|
a = a0 + da * (i/(float)ndivs); |
|
dx = nvg__cosf(a); |
|
dy = nvg__sinf(a); |
|
x = cx + dx*r; |
|
y = cy + dy*r; |
|
tanx = -dy*r*kappa; |
|
tany = dx*r*kappa; |
|
|
|
if (i == 0) { |
|
vals[nvals++] = (float)move; |
|
vals[nvals++] = x; |
|
vals[nvals++] = y; |
|
} else { |
|
vals[nvals++] = NVG_BEZIERTO; |
|
vals[nvals++] = px+ptanx; |
|
vals[nvals++] = py+ptany; |
|
vals[nvals++] = x-tanx; |
|
vals[nvals++] = y-tany; |
|
vals[nvals++] = x; |
|
vals[nvals++] = y; |
|
} |
|
px = x; |
|
py = y; |
|
ptanx = tanx; |
|
ptany = tany; |
|
} |
|
|
|
nvg__appendCommands(ctx, vals, nvals); |
|
} |
|
|
|
void nvgRect(NVGcontext* ctx, float x, float y, float w, float h) |
|
{ |
|
float vals[] = { |
|
NVG_MOVETO, x,y, |
|
NVG_LINETO, x,y+h, |
|
NVG_LINETO, x+w,y+h, |
|
NVG_LINETO, x+w,y, |
|
NVG_CLOSE |
|
}; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r) |
|
{ |
|
nvgRoundedRectVarying(ctx, x, y, w, h, r, r, r, r); |
|
} |
|
|
|
void nvgRoundedRectVarying(NVGcontext* ctx, float x, float y, float w, float h, float radTopLeft, float radTopRight, float radBottomRight, float radBottomLeft) |
|
{ |
|
if(radTopLeft < 0.1f && radTopRight < 0.1f && radBottomRight < 0.1f && radBottomLeft < 0.1f) { |
|
nvgRect(ctx, x, y, w, h); |
|
return; |
|
} else { |
|
float halfw = nvg__absf(w)*0.5f; |
|
float halfh = nvg__absf(h)*0.5f; |
|
float rxBL = nvg__minf(radBottomLeft, halfw) * nvg__signf(w), ryBL = nvg__minf(radBottomLeft, halfh) * nvg__signf(h); |
|
float rxBR = nvg__minf(radBottomRight, halfw) * nvg__signf(w), ryBR = nvg__minf(radBottomRight, halfh) * nvg__signf(h); |
|
float rxTR = nvg__minf(radTopRight, halfw) * nvg__signf(w), ryTR = nvg__minf(radTopRight, halfh) * nvg__signf(h); |
|
float rxTL = nvg__minf(radTopLeft, halfw) * nvg__signf(w), ryTL = nvg__minf(radTopLeft, halfh) * nvg__signf(h); |
|
float vals[] = { |
|
NVG_MOVETO, x, y + ryTL, |
|
NVG_LINETO, x, y + h - ryBL, |
|
NVG_BEZIERTO, x, y + h - ryBL*(1 - NVG_KAPPA90), x + rxBL*(1 - NVG_KAPPA90), y + h, x + rxBL, y + h, |
|
NVG_LINETO, x + w - rxBR, y + h, |
|
NVG_BEZIERTO, x + w - rxBR*(1 - NVG_KAPPA90), y + h, x + w, y + h - ryBR*(1 - NVG_KAPPA90), x + w, y + h - ryBR, |
|
NVG_LINETO, x + w, y + ryTR, |
|
NVG_BEZIERTO, x + w, y + ryTR*(1 - NVG_KAPPA90), x + w - rxTR*(1 - NVG_KAPPA90), y, x + w - rxTR, y, |
|
NVG_LINETO, x + rxTL, y, |
|
NVG_BEZIERTO, x + rxTL*(1 - NVG_KAPPA90), y, x, y + ryTL*(1 - NVG_KAPPA90), x, y + ryTL, |
|
NVG_CLOSE |
|
}; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
} |
|
|
|
void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry) |
|
{ |
|
float vals[] = { |
|
NVG_MOVETO, cx-rx, cy, |
|
NVG_BEZIERTO, cx-rx, cy+ry*NVG_KAPPA90, cx-rx*NVG_KAPPA90, cy+ry, cx, cy+ry, |
|
NVG_BEZIERTO, cx+rx*NVG_KAPPA90, cy+ry, cx+rx, cy+ry*NVG_KAPPA90, cx+rx, cy, |
|
NVG_BEZIERTO, cx+rx, cy-ry*NVG_KAPPA90, cx+rx*NVG_KAPPA90, cy-ry, cx, cy-ry, |
|
NVG_BEZIERTO, cx-rx*NVG_KAPPA90, cy-ry, cx-rx, cy-ry*NVG_KAPPA90, cx-rx, cy, |
|
NVG_CLOSE |
|
}; |
|
nvg__appendCommands(ctx, vals, NVG_COUNTOF(vals)); |
|
} |
|
|
|
void nvgCircle(NVGcontext* ctx, float cx, float cy, float r) |
|
{ |
|
nvgEllipse(ctx, cx,cy, r,r); |
|
} |
|
|
|
void nvgDebugDumpPathCache(NVGcontext* ctx) |
|
{ |
|
const NVGpath* path; |
|
int i, j; |
|
|
|
printf("Dumping %d cached paths\n", ctx->cache->npaths); |
|
for (i = 0; i < ctx->cache->npaths; i++) { |
|
path = &ctx->cache->paths[i]; |
|
printf(" - Path %d\n", i); |
|
if (path->nfill) { |
|
printf(" - fill: %d\n", path->nfill); |
|
for (j = 0; j < path->nfill; j++) |
|
printf("%f\t%f\n", path->fill[j].x, path->fill[j].y); |
|
} |
|
if (path->nstroke) { |
|
printf(" - stroke: %d\n", path->nstroke); |
|
for (j = 0; j < path->nstroke; j++) |
|
printf("%f\t%f\n", path->stroke[j].x, path->stroke[j].y); |
|
} |
|
} |
|
} |
|
|
|
void nvgFill(NVGcontext* ctx) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
const NVGpath* path; |
|
NVGpaint fillPaint = state->fill; |
|
int i; |
|
|
|
nvg__flattenPaths(ctx); |
|
if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) |
|
nvg__expandFill(ctx, ctx->fringeWidth, NVG_MITER, 2.4f); |
|
else |
|
nvg__expandFill(ctx, 0.0f, NVG_MITER, 2.4f); |
|
|
|
// Apply global alpha |
|
fillPaint.innerColor.a *= state->alpha; |
|
fillPaint.outerColor.a *= state->alpha; |
|
|
|
ctx->params.renderFill(ctx->params.userPtr, &fillPaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, |
|
ctx->cache->bounds, ctx->cache->paths, ctx->cache->npaths); |
|
|
|
// Count triangles |
|
for (i = 0; i < ctx->cache->npaths; i++) { |
|
path = &ctx->cache->paths[i]; |
|
ctx->fillTriCount += path->nfill-2; |
|
ctx->fillTriCount += path->nstroke-2; |
|
ctx->drawCallCount += 2; |
|
} |
|
} |
|
|
|
void nvgStroke(NVGcontext* ctx) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
float scale = nvg__getAverageScale(state->xform); |
|
float strokeWidth = nvg__clampf(state->strokeWidth * scale, 0.0f, 200.0f); |
|
NVGpaint strokePaint = state->stroke; |
|
const NVGpath* path; |
|
int i; |
|
|
|
if (strokeWidth < ctx->fringeWidth) { |
|
// If the stroke width is less than pixel size, use alpha to emulate coverage. |
|
// Since coverage is area, scale by alpha*alpha. |
|
float alpha = nvg__clampf(strokeWidth / ctx->fringeWidth, 0.0f, 1.0f); |
|
strokePaint.innerColor.a *= alpha*alpha; |
|
strokePaint.outerColor.a *= alpha*alpha; |
|
strokeWidth = ctx->fringeWidth; |
|
} |
|
|
|
// Apply global alpha |
|
strokePaint.innerColor.a *= state->alpha; |
|
strokePaint.outerColor.a *= state->alpha; |
|
|
|
nvg__flattenPaths(ctx); |
|
|
|
if (ctx->params.edgeAntiAlias && state->shapeAntiAlias) |
|
nvg__expandStroke(ctx, strokeWidth*0.5f + ctx->fringeWidth*0.5f, state->lineCap, state->lineJoin, state->miterLimit); |
|
else |
|
nvg__expandStroke(ctx, strokeWidth*0.5f, state->lineCap, state->lineJoin, state->miterLimit); |
|
|
|
ctx->params.renderStroke(ctx->params.userPtr, &strokePaint, state->compositeOperation, &state->scissor, ctx->fringeWidth, |
|
strokeWidth, ctx->cache->paths, ctx->cache->npaths); |
|
|
|
// Count triangles |
|
for (i = 0; i < ctx->cache->npaths; i++) { |
|
path = &ctx->cache->paths[i]; |
|
ctx->strokeTriCount += path->nstroke-2; |
|
ctx->drawCallCount++; |
|
} |
|
} |
|
|
|
// Add fonts |
|
int nvgCreateFont(NVGcontext* ctx, const char* name, const char* path) |
|
{ |
|
return fonsAddFont(ctx->fs, name, path); |
|
} |
|
|
|
int nvgCreateFontMem(NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData) |
|
{ |
|
return fonsAddFontMem(ctx->fs, name, data, ndata, freeData); |
|
} |
|
|
|
int nvgFindFont(NVGcontext* ctx, const char* name) |
|
{ |
|
if (name == NULL) return -1; |
|
return fonsGetFontByName(ctx->fs, name); |
|
} |
|
|
|
|
|
int nvgAddFallbackFontId(NVGcontext* ctx, int baseFont, int fallbackFont) |
|
{ |
|
if(baseFont == -1 || fallbackFont == -1) return 0; |
|
return fonsAddFallbackFont(ctx->fs, baseFont, fallbackFont); |
|
} |
|
|
|
int nvgAddFallbackFont(NVGcontext* ctx, const char* baseFont, const char* fallbackFont) |
|
{ |
|
return nvgAddFallbackFontId(ctx, nvgFindFont(ctx, baseFont), nvgFindFont(ctx, fallbackFont)); |
|
} |
|
|
|
// State setting |
|
void nvgFontSize(NVGcontext* ctx, float size) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->fontSize = size; |
|
} |
|
|
|
void nvgFontBlur(NVGcontext* ctx, float blur) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->fontBlur = blur; |
|
} |
|
|
|
void nvgTextLetterSpacing(NVGcontext* ctx, float spacing) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->letterSpacing = spacing; |
|
} |
|
|
|
void nvgTextLineHeight(NVGcontext* ctx, float lineHeight) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->lineHeight = lineHeight; |
|
} |
|
|
|
void nvgTextAlign(NVGcontext* ctx, int align) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->textAlign = align; |
|
} |
|
|
|
void nvgFontFaceId(NVGcontext* ctx, int font) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->fontId = font; |
|
} |
|
|
|
void nvgFontFace(NVGcontext* ctx, const char* font) |
|
{ |
|
NVGstate* state = nvg__getState(ctx); |
|
state->fontId = fonsGetFontByName(ctx->fs, font); |
|
} |
|
|
|
static float nvg__quantize(float a, float d) |
|
{ |
|
return ((int)(a / d + 0.5f)) * d; |
|
} |
|
|
|
static float nvg__getFontScale(NVGstate* state) |
|
{ |
|
return nvg__minf(nvg__quantize(nvg__getAverageScale(state->xform), 0.01f), 4.0f); |
|
} |
|
|
|
static void nvg__flushTextTexture(NVGcontext* ctx) |
|
{ |
|
int dirty[4]; |
|
|
|
if (fonsValidateTexture(ctx->fs, dirty)) { |
|
int fontImage = ctx->fontImages[ctx->fontImageIdx]; |
|
// Update texture |
|
if (fontImage != 0) { |
|
int iw, ih; |
|
const unsigned char* data = fonsGetTextureData(ctx->fs, &iw, &ih); |
|
int x = dirty[0]; |
|
int y = dirty[1]; |
|
int w = dirty[2] - dirty[0]; |
|
int h = dirty[3] - dirty[1]; |
|
ctx->params.renderUpdateTexture(ctx->params.userPtr, fontImage, x,y, w,h, data); |
|
} |
|
} |
|
} |
|
|
|
static int nvg__allocTextAtlas(NVGcontext* ctx) |
|
{ |
|
int iw, ih; |
|
nvg__flushTextTexture(ctx); |
|
if (ctx->fontImageIdx >= NVG_MAX_FONTIMAGES-1) |
|
return 0; |
|
// if next fontImage already have a texture |
|
if (ctx->fontImages[ctx->fontImageIdx+1] != 0) |
|
nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx+1], &iw, &ih); |
|
else { // calculate the new font image size and create it. |
|
nvgImageSize(ctx, ctx->fontImages[ctx->fontImageIdx], &iw, &ih); |
|
if (iw > ih) |
|
ih *= 2; |
|
else |
|
iw *= 2; |
|
if (iw > NVG_MAX_FONTIMAGE_SIZE || ih > NVG_MAX_FONTIMAGE_SIZE) |
|
iw = ih = NVG_MAX_FONTIMAGE_SIZE; |
|
ctx->fontImages[ctx->fontImageIdx+1] = ctx->params.renderCreateTexture(ctx->params.userPtr, NVG_TEXTURE_ALPHA, iw, ih, 0, NULL); |
|
} |
|
++ctx->fontImageIdx; |
|
fonsResetAtlas(ctx->fs, iw, ih); |
|
return 1; |
|
} |
|
|
|
static void nvg__renderText(NVGcontext* ctx, NVGvertex* verts, int nverts) |
|
{ |
|
NVGstate* state = nvg__getState( |