Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

multiple.py 1.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. """Multiple Image Transform Processing."""
  2. import copy
  3. from multiprocessing.pool import ThreadPool
  4. from config import Config as Conf
  5. from processing import Processing, SimpleProcessing
  6. from utils import camel_case_to_str
  7. class MultipleImageProcessing(Processing):
  8. """Multiple Image Processing Class."""
  9. def _setup(self, *args):
  10. self._input_paths = self._args['input']
  11. self._output_paths = self._args['output']
  12. self._process_list = []
  13. self._multiprocessing = Conf.multiprocessing()
  14. self._process_list = []
  15. for input_path, output_path in zip(self._input_paths, self._output_paths):
  16. args = copy.deepcopy(self._args)
  17. args['input'] = input_path
  18. args['output'] = output_path
  19. self._process_list.append((SimpleProcessing(args), args))
  20. Conf.log.debug(self._process_list)
  21. def _process_one(self, a):
  22. Conf.log.info("{} : {}/{}".format(
  23. camel_case_to_str(self.__class__.__name__), a[1] + 1, len(self._process_list)
  24. ))
  25. a[0][0].run(config=a[0][1])
  26. def _execute(self, *args):
  27. """
  28. Execute all phases on the list of images.
  29. :return: None
  30. """
  31. if not self._multiprocessing:
  32. for x in zip(self._process_list, range(len(self._process_list))):
  33. self._process_one(x)
  34. else:
  35. Conf.log.debug("Using Multiprocessing")
  36. pool = ThreadPool(Conf.args['n_cores'])
  37. pool.map(self._process_one, zip(self._process_list, range(len(self._process_list))))
  38. pool.close()
  39. pool.join()